数列 $\{a_n\}$ を初項 2,公比 2 の等比数列,数列 $\{b_n\}$ を初項 2,公差 2 の等差数 列とし、 $c_n = a_n b_n$ とする.

- (i) $a_{10}=$ $m{P}$ である. (ii) $b_n=a_{10}$ のとき,n= $m{1}$ である. (iii) 数列 $\{c_n\}$ の初項から第 n 項までの和を S_n とすると,

$$S_n = 4\left\{2^n\left(\boxed{\dot{\mathcal{D}}}\right) + 1\right\}$$
 である.

(13 早稲田大 国際教養 1(1))

ア	1	ウ
1024	512	n-1

解答は次のページにあります.

【チェック・チェック】

等差数列, 等比数列の基本問題です.

(iii) の ∑(等差)(等比) については

「公比倍して,引く」

という等比数列の和の公式を求めるときの操作をまねましょう.

【解答】

(i) $\{a_n\}$ は初項 2, 公比 2 の等比数列であるから

$$a_n = 2 \cdot 2^{n-1} = 2^n$$

$$\therefore \quad a_{10} = 2^{10} = \boxed{\mathbf{1024}}$$

$$\cdots (答)$$

(ii) $\{b_n\}$ は初項 2、公差 2 の等差数列であるから

 $b_n = 2 + (n-1) \cdot 2 = 2n$

$$b_n = a_{10} \iff 2n = 1024$$

$$\therefore \quad n = \boxed{512} \qquad \qquad \cdots (答$$

(iii)
$$c_n = a_n b_n = 2^n \cdot 2n = n \cdot 2^{n+1} \ \sharp \ \emptyset$$

$$S_n = 1 \cdot 2^2 + 2 \cdot 2^3 + 3 \cdot 2^4 + \dots + n \cdot 2^{n+1}$$

$$2S_n = 1 \cdot 2^3 + 2 \cdot 2^4 + \dots + (n-1) \cdot 2^{n+1} + n \cdot 2^{n+2}$$

$$-S_n = 2^2 + 2^3 + 2^4 + \dots + 2^{n+1} - n \cdot 2^{n+2}$$

$$= 4 \cdot \frac{2^n - 1}{2 - 1} - n \cdot 2^{n+2}$$

$$= -4\{2^n(n-1) + 1\}$$

$$\therefore S_n = 4\left\{2^n\left(\boxed{n-1}\right) + 1\right\} \qquad \cdots (8)$$

← 等比数列の一般項

← 等差数列の一般項

— ∑(等差)(等比)

← 公比倍して、引く

-- 等比数列の和 = <u>(初項)(公比^(項数) - 1)</u> 公比 - 1