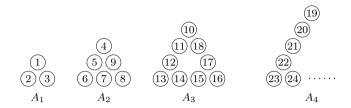
下図のように、1から順に番号の付いた碁石を並べてつくられた正三角形の列 $A_1,\ A_2,\ A_3,\ \cdots$ がある。正三角形 $A_n\ (n=1,\ 2,\ 3,\ \cdots)$ の右下隅にある碁石の 番号を a_n とし、 A_n 中のすべての碁石の番号の和を S_n とする.

(例 $a_1 = 3$, $a_2 = 8$, $a_3 = 16$, $S_2 = 4 + 5 + 6 + 7 + 8 + 9 = 39$)



- (1) a_n の一般項を求めよ.
- (2) S_n の一般項を求めよ.
- (3) $\lim_{n\to\infty}\frac{1}{n^5}\sum_{k=1}^n k\left(S_k-\frac{3}{2}k\right)$ を、ある関数の定積分を用いて表し、この極限値 を求めよ.

(13 群馬大 教育・理工 6)

$$(1) \ \frac{1}{2}(3n^2 + n + 2)$$

(2)
$$\frac{3}{2}n(3n^2+1)$$

(3) $\frac{9}{10}$

(3)
$$\frac{9}{10}$$

【チェック・チェック】

三角形をじっとみつめて数字が並ぶ規則を見つけましょう。規則をみつけたら A_n の最大番号を n で表してみましょう。

これにより (1), (2) は解決します. (3) は区分求積に持ち込みなさいというヒントまでついていますね.

【解答】

(1) 正三角形 A_n に含まれる碁石の個数は \checkmark , \longrightarrow , \nwarrow の順に数 えると

に注意すると

$$\checkmark$$
 上に $n+1$ 個,
 \longrightarrow 上に n 個,
 $^{\land}$ 上に $n-1$ 個

の碁石が並んでいる.

$$(n+1) + n + (n-1) = 3n$$
 (個)

であり、最大の数字は

$$3+6+\cdots+3n=3(1+2+\cdots+n)=\frac{3}{2}n(n+1)$$

したがって、正三角形 A_n の右下隅にある碁石の番号 a_n は

$$a_n = \frac{3}{2}n(n+1) - (n-1)$$

= $\frac{1}{2}(3n^2 + n + 2)$ (\(\frac{\pi}{2}\))

(2) 正三角形 A_n に含まれる碁石の数字を小さい順に並べると、初 項 $\frac{3}{2}(n-1)n+1$ 、末項 $\frac{3}{2}n(n+1)$ 、項数 3n の等差数列である から

$$S_n = \frac{3n}{2} \left\{ \frac{3}{2} (n-1)n + 1 + \frac{3}{2} n(n+1) \right\}$$

= $\frac{3}{2} n(3n^2 + 1)$ (答

 $\longleftarrow \frac{(\bar{q}\underline{w})(\bar{q}\underline{q} + \bar{x}\underline{q})}{2}$

(3) (2) より

$$\lim_{n \to \infty} \frac{1}{n^5} \sum_{k=1}^n k \left(S_k - \frac{3}{2} k \right)$$

$$= \lim_{n \to \infty} \frac{1}{n^5} \sum_{k=1}^n k \left\{ \frac{3}{2} k (3k^2 + 1) - \frac{3}{2} k \right\}$$

$$= \lim_{n \to \infty} \frac{1}{n^5} \sum_{k=1}^n \left(\frac{9}{2} k^4 \right) = \frac{9}{2} \lim_{n \to \infty} \sum_{h=1}^n \left(\frac{k}{n} \right)^4 \frac{1}{n}$$

$$= \frac{9}{2} \int_0^1 x^4 dx = \frac{9}{2} \left[\frac{x^5}{5} \right]_0^1$$

$$= \frac{9}{10} \qquad \qquad \cdots ($$

← 区分求積 チェクリピ 227