座標平面上に 2 点 A(-1, 0), B(3, 2) をとる. m を実数とし、直線 y=mx を l とする. 以下の問いに答えよ.

- (1) l 上の点 P の座標を (t, mt) とするとき, $PA^2 + PB^2$ を t, m を用いて表せ.
- (2) 点 P が l 上を動くとき, $PA^2 + PB^2$ を最小にする P の座標を (X, Y) とおく. X, Y を m で表せ.
- (3) m が実数全体を動くとき、(X, Y) はある曲線 C 上を動く. C の方程式を求めよ.

(13 中央大 理工 3)

 $\left(x - \frac{1}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2 = \frac{1}{2}$ 解答は次のページにあります。

【チェック・チェック】

設問 (2) は軌跡がのる曲線を求めていますが (除外点は考慮しなくてよい), 軌跡そのものを求めることにしましょう.

【解答】

- (1) A(-1, 0), B(3, 2), P(t, mt) より $PA^{2} + PB^{2}$ $= \{(t+1)^{2} + (mt)^{2}\} + \{(t-3)^{2} + (mt-2)^{2}\}$ $= 2(m^{2} + 1)t^{2} 4(m+1)t + 14 \qquad \cdots (答)$
- $\longleftarrow t$ についての 2 次関数である.

(2) (1) より

$$PA^{2} + PB^{2}$$

$$= 2(m^{2} + 1) \left(t - \frac{m+1}{m^{2} + 1}\right)^{2} - \frac{2(m+1)^{2}}{m^{2} + 1} + 14$$

← 平方完成する.

よって、 $PA^2 + PB^2$ が最小になるのは

$$t = \frac{m+1}{m^2 + 1}$$

← 頂点で最小となる.

のときであるから、 $\mathrm{PA}^2 + \mathrm{PB}^2$ を最小にする P の座標 $(X,\ Y)$ は

$$X = \frac{m+1}{m^2+1}, \quad Y = \frac{m(m+1)}{m^2+1}$$
(2)

(3) (2) より

$$\begin{cases} X = \frac{m+1}{m^2+1} \\ Y = \frac{m(m+1)}{m^2+1} \end{cases} \iff \begin{cases} X = \frac{m+1}{m^2+1} & \dots & \dots & \text{(1)} \\ Y = mX & \dots & \text{(2)} \end{cases}$$

- $\{①, ②\}$ を満たす実数 m が存在するための X, Y の条件を求める. ②をみて
- ← パラメータ m の存 在条件
- (i) $X \neq 0$ のとき;②は $m = \frac{Y}{X}$ である.これを①に代入すると

$$X = \frac{\frac{Y}{X} + 1}{\frac{Y^2}{X^2} + 1} = \frac{XY + X^2}{Y^2 + X^2}$$

$$\iff X(X^2 + Y^2) = X(Y + X)$$

$$\iff Y^2 + X^2 = Y + X \quad (\because X \neq 0)$$

$$\iff \left(X - \frac{1}{2}\right)^2 + \left(Y - \frac{1}{2}\right)^2 = \frac{1}{2}$$

 \longleftarrow ②を m について の方程式とみて, $X = \neq 0, = 0$ の場合分けをする.

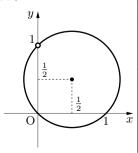
(ii) X = 0 のとき;②より Y = 0, ①より m = -1 したがって,点(0,0) は条件を満たす.

以上(i), (ii) より, 点 (X, Y) の軌跡は

円
$$\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=\frac{1}{2}$$
 から、点 $(0,\ 1)$ を除いたものであり、点 $(X,\ Y)$ は円

$$\left(x - \frac{1}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2 = \frac{1}{2}$$

上を動く. ……(答



← 除外点があることに 注音!!