△ABC において, 辺 AC を 3:2 に内分する点を D とし, 線分 BD を 2:1
に内分する点を E とする. $\overrightarrow{AB} = \overrightarrow{a}, \overrightarrow{AC} = \overrightarrow{b}$ とするとき, \overrightarrow{AE} を \overrightarrow{a} と \overrightarrow{b} を
用いて表すと, $\overrightarrow{AE} = \square$ である.また,直線 \overrightarrow{AE} と辺 \overrightarrow{BC} との交点を \overrightarrow{F} とす
るとき,比 BF:FC を求めるとである.
(13 福岡大 工・薬 4)

$\frac{1}{3}\overrightarrow{a} + \frac{2}{5}\overrightarrow{b}$	6:5

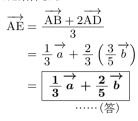
解答は次のページにあります.

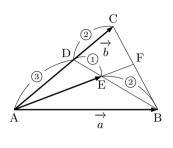
【チェック・チェック】

2直線の交点を扱った基本的な問題です.1次独立の扱いに慣れましょう. メネラウスの定理も使うと簡単に処理できることもあります.

【解答】

与えれた条件より





また、F は直線 AE 上の点であるから、実数 k を用いて

$$\overrightarrow{AF} = k\overrightarrow{AE} = \frac{k}{3}\overrightarrow{a} + \frac{2k}{5}\overrightarrow{b} \qquad \cdots$$
 ①

と表すことができる. F は辺 BC 上の点であるから, 実数 t を用いて

$$\overrightarrow{AF} = (1-t)\overrightarrow{a} + t\overrightarrow{b}$$

と表すこともできる. $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$ は 1 次独立であるから, ①, ②より $\Big|$ ← 2 通りの表現①, ②

$$\begin{cases} \frac{k}{3} = 1 - t \\ \frac{2k}{5} = t \end{cases} \qquad \therefore \quad k = \frac{15}{11}, \ t = \frac{6}{11}$$

← 1 次独立による表現 の一意性

よって, BF: FC =
$$\frac{6}{11}$$
: $\left(1 - \frac{6}{11}\right) = \boxed{\mathbf{6:5}}$ (答) \longleftarrow BF: FC = t : $(1-t)$

①より

$$\overrightarrow{AF} = \frac{k}{3}\overrightarrow{AB} + \frac{2k}{5}\overrightarrow{AC}$$

F は辺 BC 上の点でもあるから

$$\frac{k}{3} + \frac{2k}{5} = 1 \qquad \therefore \quad k = \frac{15}{11}$$

$$\overrightarrow{AF} = \frac{5}{11} \overrightarrow{a} + \frac{6}{11} \overrightarrow{b}$$

F が直線 BC 上の点 であるための条件は (係数の和) = 1

よって、BF:FC=6:5

メネラウスの定理より

$$\frac{\mathrm{BF}}{\mathrm{FC}} imes \frac{5}{3} imes \frac{1}{2} = 1$$
 \therefore $\frac{\mathrm{BF}}{\mathrm{FC}} = \frac{6}{5}$

$$\leftarrow$$
 $\frac{BF}{FC} \times \frac{CA}{AD} \times \frac{DE}{EB} = 1$

 \therefore BF : FC = 6 : 5