実数 t の関数

$$F(t) = \int_0^1 |x^2 - t^2| \, dx$$

について考える.

- (1) $0 \le t \le 1$ のとき, F(t) を t の整式として表せ.
- (2) $t \ge 0$ のとき、F(t) を最小にする t の値 T と F(T) の値を求めよ.

(22 東北大 文系 2)

[答]

(1)
$$F(t) = \frac{4}{3}t^3 - t^2 + \frac{1}{3}$$

$$(2)$$
 $T=rac{1}{2}$ のとぎ, $F\left(rac{1}{2}
ight)=rac{1}{4}$

【解答】

$$F(t) = \int_0^1 |x^2 - t^2| \, dx = \int_0^1 |(x+t)(x-t)| \, dx$$

(1) $0 \le t \le 1 \text{ obs}$

$$F(t) = \int_0^1 (x+t)|x-t| \, dx$$

t は積分区間 $0 \le x \le 1$ 内にあるから

$$F(t) = \int_0^t (t^2 - x^2) dx + \int_t^1 (x^2 - t^2) dx$$

$$= \left[t^2 x - \frac{x^3}{3} \right]_0^t + \left[\frac{x^3}{3} - t^2 x \right]_t^1$$

$$= 2 \left(t^3 - \frac{t^3}{3} \right) + \left(\frac{1}{3} - t^2 \right)$$

$$= \frac{4}{3} t^3 - t^2 + \frac{1}{3} \qquad \cdots (25)$$

である.

(2) $t \ge 0$ のとき、t が積分区間に $0 \le x \le 1$ にあるか否かで場合分けする.

$$0 \le t \le 1$$
 のとき, (1) より

$$F(x) = \frac{4}{3}t^3 - t^2 + \frac{1}{3}$$

であり、0 < x < 1 のとき

$$F'(t) = 4t^2 - 2t = 2t(2t - 1)$$

である.

 $t \ge 1$ のとき

$$F(t) = \int_0^1 (t^2 - x^2) dx = \left[t^2 x - \frac{x^3}{3} \right]_0^1 = t^2 - \frac{1}{3}$$

であり、単調増加である.

よって, $t \ge 0$ における F(t) の増減は下の通りである.

t	0		$\frac{1}{2}$		1	
F'(t)		_	0	+		+
F(t)		`	$\frac{1}{4}$	1	$\frac{2}{3}$	1

よって、F(t) は

$$T=rac{1}{2}$$
 のとき、最小値 $F\left(rac{1}{2}
ight)=rac{1}{4}$ ……(答)

をとる.