### 問題

#### 2円の位置関係

103 2 点 P, Q がそれぞれ 2 つの円  $x^2 + y^2 - 16 = 0$ ,  $x^2 - 2\sqrt{3}x + y^2 - 2y + 3 = 0$  の上を動くとき、線分 PQ の長さの最大値と最小値を求めよ。

(東京電機大)

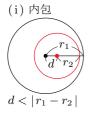
104 円  $(x-8)^2 + (y-15)^2 = 25$  に外接する原点中心の円は であり、内接する原点中心の円は である。 (玉川大)

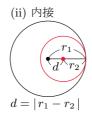
# チェック・チェック

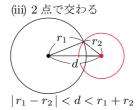
#### 2円の位置関係 …………

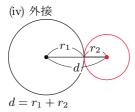
**103** 線分 PQ の長さが最大あるいは最小となるのは、P, Q が 2 円の中心を通る直線上にあるときです。

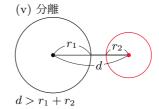
104 2 円の位置関係は、中心間の距離 d と 2 円の半径  $r_1$ 、 $r_2$  を調べることによりわかります。













## 解答・解説

### 2円の位置関係 …………

103  $x^2 + y^2 = 16$  は原点が中心で半径 4 の円であり,  $(x - \sqrt{3})^2 + (y - 1)^2 = 1$  は中心が  $(\sqrt{3}, 1)$  で,半径 1 の円である。

中心間の距離は  $\sqrt{3+1}=2$  図のように A,B,C をとると線分 PQ の最大値は  $AC=4+2+1=\overline{2}$ 



線分 PQ の最小値は

$$AB = 4 - 2 - 1 = 1$$

104 円  $C_0: (x-8)^2 + (y-15)^2 = 25$  は、中心 A(8, 15),半径 5 の円である。円  $C_0$  に外接する原点中心の円は、接点を B とすると

半径 OB = OA - AB  
= 
$$\sqrt{8^2 + 15^2} - 5 = 12$$
  
∴  $x^2 + y^2 = 12^2$ 

また,円  $C_0$  に内接する原点中心の円は,接点をCとすると

