4 章: 微分法 § 1: 導関数

1.5 三角関数・指数関数・対数関数の微分

問題

141 (1) 関数 $y = \sin(x^2) - (\sin x)^2$ を微分せよ。 (東京都市大)

 $(2) x \sin 2x$ を微分せよ。 (津田塾大)

(3) 次の関数を微分せよ。 $y = \frac{\cos x}{1 - \sin x}$ (埼玉大)

(4) つぎの関数を微分しなさい。 $y = \tan 2x$ (信州大)

142 (1) e^{x^2+1} を微分せよ。ただし e は自然対数の底とする。

(東京農工大)

(2) 関数 $f(x) = \frac{1}{1 + e^x}$ の第 1 次導関数 f'(x) は である。

(静岡理工科大)

(3) 計算せよ。
$$\frac{d}{dx}2^x =$$
 (東海大)

- **143** (1) 関数 $y = 3^{\log x}$ を x について微分しなさい。 (広島市立大他)
- (2) 関数 $y = \log(x + \sqrt{x^2 + 1})$ を微分せよ。 (成蹊大)
- (3) $\frac{1}{x^2} \log x$ を微分せよ。 (東京農工大)

4 章: 微分法 § 1: 導関数

チェック・チェック

141 ~ 143 主な関数の導関数を確認しておきましょう。

$$\begin{array}{ll} (x^{\alpha})' = \alpha x^{\alpha - 1} \; (\alpha \mbox{lt} \mbox{ছ}\mbox{$\underline{\dagger}$$

これらの公式と合成関数、積・商の微分の公式を用いるといろいろな関数の導関数を求めることができます。

4章:微分法

解答・解説

141 (1)
$$y = \sin(x^2) - (\sin x)^2 \ \sharp \ \emptyset$$

 $y' = \cos(x^2) \cdot (x^2)' - 2\sin x \cdot (\sin x)'$
 $= 2x\cos(x^2) - 2\sin x \cos x$

(2)
$$y = x \sin 2x$$
 とおくと

$$y' = (x)' \sin 2x + x(\sin 2x)' = \sin 2x + 2x \cos 2x$$

(3)
$$y = \frac{\cos x}{1 - \sin x} \, \, \sharp \, \, \emptyset$$

$$y' = \frac{(\cos x)' (1 - \sin x) - \cos x (1 - \sin x)'}{(1 - \sin x)^2}$$

$$= \frac{-\sin x (1 - \sin x) - \cos x (-\cos x)}{(1 - \sin x)^2}$$

$$= \frac{-\sin x + \sin^2 x + \cos^2 x}{(1 - \sin x)^2} = \frac{1 - \sin x}{(1 - \sin x)^2}$$

$$= \frac{1}{1 - \sin x}$$

(4)
$$y = \tan 2x \, \sharp \, \emptyset$$

 $y' = \frac{1}{\cos^2 2x} \cdot (2x)' = \frac{2}{\cos^2 2x}$

(2)
$$f(x) = \frac{1}{1+e^x} \, \, \sharp \, \, \emptyset$$

 $f'(x) = \frac{-(1+e^x)'}{(1+e^x)^2} = \frac{-e^x}{(1+e^x)^2}$

$$(3) \qquad \frac{d}{dx}2^x = \underline{2^x \log 2}$$

$$2^{x} = e^{\log 2^{x}} = e^{x \log 2} \downarrow \emptyset$$
$$\frac{d}{dx} 2^{x} = e^{x \log 2} \cdot (x \log 2)' = e^{\log 2^{x}} \cdot (\log 2) = 2^{x} \log 2$$

4章:微分法

$$y' = 3^{\log x} \log 3 \cdot (\log x)' = \frac{3^{\log x} \log 3}{x}$$

別解 対数微分法を用いる。 $y=3^{\log x}>0$ より両辺の自然対数をとると $\log y=\log 3^{\log x}=(\log x)(\log 3)$

両辺をxで微分して

$$\frac{y'}{y} = \frac{\log 3}{x} \qquad \therefore \quad y' = y \cdot \frac{\log 3}{x} = \frac{3^{\log x} \log 3}{x}$$

$$y' = \frac{\frac{(x + \sqrt{x^2 + 1})'}{x + \sqrt{x^2 + 1}}}{\frac{x + \sqrt{x^2 + 1}}{\sqrt{1 + x^2}}} = \frac{\frac{1 + \frac{1}{2} \cdot \frac{1}{\sqrt{1 + x^2}} \cdot 2x}{x + \sqrt{x^2 + 1}}}{\frac{\sqrt{1 + x^2} + x}{\sqrt{1 + x^2}}} = \frac{1}{\sqrt{1 + x^2}}$$

(3)
$$y = \frac{1}{x^2} \log x$$
 とおくと, $y = x^{-2} \log x$ であり

$$y' = (x^{-2})' \log x + x^{-2} (\log x)' = -2x^{-3} \log x + x^{-2} \cdot \frac{1}{x}$$
$$= -\frac{2}{x^3} \log x + \frac{1}{x^3} = \frac{1 - 2 \log x}{x^3}$$