月

与えられたすべてのものやすべての場合を数えあ げることは基本的なことがらである.

思いつくままに数えていったのでは、見落としが

あったり、2度数えをしてしまう危険がある.

モレなく, ダブリなく

数えることが大切であり、これを"順列・組合せ"と公式化する. しかし、素朴に数えあげなければならないこともある。

この章では,次のテーマを扱う.

I. 場合の数
 II. 順列・組合せ

Ⅲ. 二項定理

1. 場 合 の 数

1° 和の法則 2つのことがらA, Bが同時に起こらないとき, A, Bの起 こり方がそれぞれ m, n 通りであるならば, A, Bいずれかが起こる場合 の数は(m+n)通りである.

集合の要素の個数で表すなら

 $A \cap B = \phi$ to bif, $n(A \cup B) = n(A) + n(B)$

ということであり $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

の特別なものである.

 2° 積の法則 2 つのことがらA, Bがあって, Aの起こり方がm通り, そ の1つ1つの起こり方に対して、Bの起こり方がn通りであるならば、A とBがともに起こる場合の数は mn 通りである.

ここで、AとBの起こり方は互いに無関係であることを注意しておく. これも集合の要素の個数で表すなら

 $n(A \times B) = n(A) \cdot n(B)$

3° モレなく、ムダなく数える統一的な方法として 辞書式配列の活用、樹形図の活用

が有効である.

- 編 期 1

《和の法則・積の法則〉

- (1) 5 桁の整数 3*x*5*y*9 が 27 で割り切れるとき、このような数は全部で(7) □ 個ある. (福岡大)
- (2) 3 桁の数のうち 8 でも 3 でも割り切れない も の の 個 数 は (関西学院大)
- (3) 6000の約数の中で15の倍数であるものは,

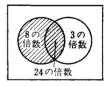
の形のものに限られ、合計 (H)______ 個ある. またそれらの総和

は 15・6) (日本大)

(1)
$$3x5y9 = 30000 + 1000x + 500 + 10y + 9$$

= $(27 \cdot 1111 + 3) + (27 \cdot 37 + 1)x + (27 \cdot 19 - 13) + 10y + 9$
= $27(37x + 1130) + x + 10y - 1$

0 \le x \le 9, 0 \le y \le 9 より -1 \le x+10y-1 \le 98 であるから, x+10y-1が27 で割り切れるには


$$x+10y-1=0$$
, 27, 54, 81

∴ 3x5y9=31509, 38529, 35559, 32589 の4個

(2) (3桁の数)-{(8の倍数)+(3の倍数)

$$-(24 \mathcal{O} 倍数) \}$$

$$= 900 - \left\{ \left(\frac{992 - 104}{8} + 1 \right) + \left(\frac{999 - 102}{3} + 1 \right) - \left(\frac{984 - 120}{24} + 1 \right) \right\}$$

=525

(3) $6000 = 15 \cdot 2^4 \cdot 5^2$ であるから、15 の倍数であるものは

$$15 \cdot 2^{x} \cdot 5^{y}$$
 $(0 \le x \le 4, 0 \le y \le 2)$

の形であり、合計はxが 0, 1, 2, 3, 4 の 5 通り、y は 0, 1, 2 の 3 通りであるから $5 \times 3 = 15$ 個ある.

これらの総和は

$$15(2^{0}+2^{1}+2^{2}+2^{3}+2^{4})(5^{0}+5^{1}+5^{2})$$

$$=15 \cdot \frac{2^{5}-1}{2-1} \cdot \frac{5^{3}-1}{5-1}$$

$$=15 \cdot 31^{2}$$

解答 (分 4 (4) 525 (分 0 (工 4 (水 0 (力 2

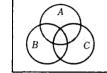
(**+**) 15 (ク) 31 (ケ) 2

1° (1)は直接数え上げる問題であるが、(2)は和の法則、(3)では積の法則が使われていることに注意してほしい・

2°(1) 何のことわりもなく"整数 3x5y9"とあれば、こ

れは10進法で表された整数を意味する. したがって, 位をつけて書くと $3x5y9=3\times10^4+x\times10^3+5\times10^2+y\times10+9$

であり、 $0 \le x \le 9$ 、 $0 \le y \le 9$ という条件が自然についてくる.


3° 和の法則を使うときはベン図を書きながら考えるとよい.(2)は2つの集合の場合だが、3つの集合になると

$$n(A \cup B \cup C)$$

$$= n(A) + n(B) + n(C)$$

$$-n(A \cap B) - n(B \cap C) - n(C \cap A)$$

$$+ n(A \cap B \cap C)$$

となる(演習1).

4° 一般に, $N=P_1^{a_1}P_2^{a_2}$ ······· $P_n^{a_n}$ と素因数分解されるとき, Nのすべての約数(1, Nを含む)は

$$(P_1^0 + P_1^1 + \dots + P_1^{a_1})(P_2^0 + P_2^1 + \dots + P_2^{a_2}) \cdot \dots \cdot \dots \cdot (P_n^0 + P_n^1 + \dots + P_n^{a_n})$$

の展開式の各項として1度ずつ現れる. この項数が約数の個数となり、その総和が約数の和となるから

$$N$$
の約数の個数= $(a_1+1)(a_2+1)\cdots(a_n+1)$

$$N$$
の約数の総和= $rac{P_1^{a_1+1}-1}{P_1-1}\cdotrac{P_2^{a_2+1}-1}{P_2-1}\cdot\dots\cdotrac{P_n^{a_n+1}-1}{P_n-1}$

である.

—▶演 習◀------

- 【1】 (1) 1000以下の正の整数で2,3,4,5,6のどれによっても割り切れないものの個数を求めよ. (千葉大)

標間 2.

------<<辞書式配列>--

7個の文字A, B, C, D, E, F, Gを1列に並べる順列 を考える. このとき.

- (1) すべての順列を辞書のアルファベット順の方式で配列するとき、第1234番目にある順列を求めよ.
- (2) $A \ge C$ がいずれも端になく、ともに $G \ge$ 隣り合う順列は全部で何通りあるか. (九 大)

精講

- (1) 順列という言葉からすぐ公式の適用と考えるのは早計である。和の法則・積の法則を使いながら順列を数え上げていてうというのが本間である。
- (2) **A**とCがGと隣り合う, というのは AGC, CGA の 2 通りがあり, **隣り 合うものは1つとみなす**のが定石.

解答 (1) A○○○○○ と並ぶのは 6!=720 BA○○○○○ と並ぶのは 5!×4=120×4=480 BE○○○○○ と並ぶのは 4!=24 BFCA○○ と並ぶのは 3!=6 したがって、BFCAGED が 720+480+24+6=1230 番目 であり、これ以後 BFCDAEG、BFCDAGE、BFCDEAG と並び、第 1234番目は BFCDEGA ……(答) (2) B、D、E、Fを並べ、間に AGC を入れる. AとCを入れかえたものも考えると (4!×3)2=144 通り ……(答)

【2】 6個の数字 0, 1, 2, 3, 4, 5 を用いて 4 桁の数をつくるとき, 1 つ の数字を 1 回しか使わないとすれば, 全部で 個あり, そのうち3210 より大きいものは 個ある. (北大)

————▶演 習◀———

- 標間 3.

━━━<支払い方法>

10円,50円,100円硬貨を使って240円の支払いをするのに,

可能な支払い方法は の 通りである.

また, 3種類の硬貨を必ず使うとすれば, (が) 通りの方法が可能である. (武蔵大)

精講

100円,50円,10円硬貨の枚数をそれぞれx,y,zとし

100x + 50y + 10z = 240

 $\therefore 10x + 5y + z = 24$

となる組(x, y, z) の個数を調べればよい. ただし,

 $x \ge 0$, $y \ge 0$, $z \ge 0$

とする. x, y, z を辞書式に調べていくと

x=0 のとき、

5u + z = 24

これを満たす (y, z) は

(y, z) = (0, 24), (1, 19), (2, 14),

(3, 9), (4, 4) の5通り

x=1 のとき、5y+z=14 ゆえ

(y, z) = (0, 14), (1, 9), (2, 4) の3通り

x=2 のとき、5y+z=4 ゆえ

(y, z) = (0, 4) の1通り

以上より, 可能な支払い方法は 5+3+1=9 通り

このうち、3種類の硬貨が使われるのは 2 通り

解答 (方) 9 (4) 2

[3] nは正の整数とする.

- (1) 10円玉と50円玉を組み合わせて合計 $50 \times n$ 円にするには (n+1) 通りの方法があることを示せ・
- (2) 10円玉, 50円玉, 100円玉を組み合わせて合計 100×n 円にするには 何通りの方法があるか.
- (3) 10円玉,50円玉,100円玉,500円玉を組み合わせて合計1万円にする には何通りの方法があるか. (阪大)

標間 4.

-----⟨塗り分け・樹形図⟩。

長方形を右の図のように6つの三角形に分け、赤、青、黄の3色を使って次の条件をすべて満たすように塗り分けたい.

- (i) それぞれの三角形を赤、青、黄の中 🔽
- (i) それぞれの三角形を赤、青、黄の中の1色だけで塗りつぶす。
- (ii) 1辺を共有する2個の三角形を異なる色で塗る.
- (iii) 赤, 青, 黄のうちで使わない色はない。

このとき,塗り方はいく通りあるか.

(同志社大)

精講

各三角形と色との対応を(i),(ii),(iii)の条件を満たすようにつければよい.それには樹形図を利用すればよい.とれは辞書式分類法と並ぶ非常に有効な手段である.

解答 右図のように各三角形を A, B, ……, F とし, 赤, 青, 黄をそれぞれ 1, 2, 3 とすれば, (A, B)=(1, 2) のとき

E F A D C B

(A, B)=(1, 3), (2, 1), (2, 3), (3, 1), (3, 2) のときも考えて 6×10=60 通り ……(答)

C

D

A

Е

В

樹形図を使わずに数えあげてみよう.

Aに赤を塗ったときを考えると、赤は使われても多くて3回である。

- (i) 赤を3回使うとき(A, C, Eは赤)
 - B, D, Fは青または黄が塗られ、2[®] 通りの塗り方があるが、すべての色を使わなければいけない(iii)から

 $2^3-2=6$ 通り

(ii) 赤を2回使うとき(C, D, Eのうち1つが赤)

(ア) C が赤のとき: B と E の色を決めればよい. 2²=4

(4) Dが赤のとき: BとEの色を決めればよい. 2²=4

(b) Eが赤のとき: CとFの色を決めればよい. 22=4

3×4=12 诵り

(iii) 赤を1回使うとき(Aのみ赤)

Bの色を決めれば残りも決まるから 2 通り

Aに塗るのは赤,青,黄の3通りが考えられるから,求める数は $(6+12+2) \times 3=60$ 通り

- 【4】 5色の絵の具を使って右図のA, B, C, D, E を塗り分けるとき,
 - (1) すべての色が異なる場合は何通りあるか.
 - (2) 同じ色を何回使ってもよいが、隣り合う部分は異なる色とする場合は何通りあるか.

- **【5】** 式 *x*+3*y*+2*z*=11 を満足する自然数の組(*x*, *y*, *z*)は る. (長崎総合科学大)
- 【6】 A, B, C家の各家にはそれぞれ息子と娘が1人ずつ, D家には息子が1人だけいる. この7人が集まってダンスをすることになった. きょうだいは組にならないようにして男女1人ずつの組を3組つくりたい.
 - (1) 組のつくり方は何通りあるか.
 - (2) A家の息子とB家の娘は組にならないとすれば、組のつくり方は何通りあるか. (同志社大)

標間 5.

-----〈塗り分け〉--

正六角形を、中心を通る対角線を引いて6個の正三角形に分ける。これを5種の色を全部用いて塗り分けるとき、その仕方は何通りあるか。ただし、表だけに色を塗り、回転して重なるものは同じ塗り方とする。また辺を共有する三角形にはちがう色を塗るものとする。 (法政大)

精講

回転して重なるものは同じ塗り方とするところに注意. 6個 の三角形を5種の色で塗り分けるのだから2か所同じ色が塗

ると右のように3つのタイプが考えられるが, (a)を 120°回転させると(c)となるので実質的には, (a), (b)の2タイプで

られる、その1つを固定す

ある. 次に色付けをすることになるが、(b)では5種の色を1, 2, 3, 4, 5 とし、(ABCADE) の順に色付けしたとすると同じものが現れるので注意. たとえば、(123145) と (145123) は同じである (180° 回転してみよ).

解答 6個の正三角形に5種の色を塗るのだから、2か所同じ色が 塗られる.次の2つのパターンが考えられる.

(i)のとき, 5!=120

(ii)のとき、回転したとき重な る塗り方を考えると

$$\frac{5!}{2} = 60$$

E A B
D C A

よって, 求める塗り方は

120+60=180 通り

……(答)

---▶演 習◀---

【7】 立方体の6面に1から6までの数字を1つずつ書き入れることにする。相対する2面の数の和が全部奇数になるようにする方法は、いく通りあるか。計算の結果とそれに至る考察の過程を述べよ。ただし、回転によって同じ書き入れ方になる場合は、それらを区別しないで、1通りに数えることとする。 (甲南大)

0, 1, 2, 3, 4 の数字 5 個を全部使って 5 桁の 整数 を つくる. このうち数字の並べ方を逆にしても 5 桁の数となり、それをもとの数に加えると、どれかの桁に奇数が現れるものはいく通りあるか. (関西大)

(i) a+e が奇数となるのは、a, e は 1, 2, 3, 4 のいずれかであり、b, c, d は残り 2 つと 0 により決まる.

$$(4 \cdot 2) \times 3! = 48$$

(ii) a+e が偶数で b+d が奇数となるのは, a, e を 2, 4 で決め, b, c, d を 0, 1, 3 で決めるときである.

$$2\times(2\cdot2)=8$$

よって,求める数は

……(答)

"どれか"の桁に奇数が現れる,ということは"少なくとも1つ"の桁に奇数が現れるということであり,余事象を考え 全体から引いてもよい。

a, e が 0 でない 5 桁の数は

$$4 \cdot 3 \cdot 3! = 72$$

a+e, b+d がともに偶数となるのは, a, e が0 でないことを考えると次の2 通りが考えられる.

(i) 奇 (偶) (偶) 奇 2·3!=12

(ii) (偶) 奇 0 奇 偶 2·2=4

よって,72-(12+4)=56 通り

Ⅱ. 順列・組合せ

 1° 順列 相異なるn個のものからr個取る順列の総数を $_{n}P_{r}$ で表すと

$$_{n}P_{r} = \underbrace{n(n-1)(n-2) \cdot \dots \cdot (n-r+1)}_{r \text{ 個の積}}$$

$$= \underbrace{\frac{n!}{(n-r)!}}$$

特に, r=n のときは $_{n}P_{n}=n!$

(注) 0!=1 と定める.

 2° **重複順列** 相異なるn種のものからくり返し取ることを許してr個取る順列の総数をn Π r で表すと

$$_n \prod_r = n^r$$

 3° 同じものを含む順列 同じものがそれぞれp個,q個,r個,……の合 計n個のものでできる順列の総数は

$$\frac{n!}{p! \, q! \, r! \cdots} \quad (p+q+r+\cdots=n)$$

4° 円順列 相異なる n 個のものを円形に並べてできる順列の数は

$$(n-1)!$$

特に,裏返しができる場合(じゅず順列)

$$\frac{(n-1)!}{2}$$

5° 組合せ 相異なる n 個のものから r 個取る組合せの総数を n C r で表すと r 個の種

$${}_{n}C_{r} = \frac{\overbrace{n(n-1)(n-2)\cdots\cdots(n-r+1)}^{r}}{r!}$$

$$= \frac{n!}{r!(n-r)!} = \frac{{}_{n}P_{r}}{r!}$$

 $\sharp t$, ${}_{n}C_{r} = {}_{n}C_{n-r}$, ${}_{n}C_{r} = {}_{n-1}C_{r} + {}_{n-1}C_{r-1}$, $r_{n}C_{r} = n_{n-1}C_{r-1}$

6° **重複組合せ** 相異なるn種のものからくり返し取ることを許してr個取る組合せの総数をnHrで表すと

$$_{n}\mathbf{H}_{r} = _{n+r-1}\mathbf{C}_{r}$$

この公式は、教科書によっては、全く載っておらず、またある教科書では「発展」といった部分のテーマになっている。この公式を使いこなすには多少の訓練がいるが、本書の読者諸君は、使える道具にしてほしい。

7° 分配 n個のものをAにp個、Bにq個、Cにp0、……と分配する仕方の総数は ${}_{n}C_{p\cdot n-p}C_{q\cdot n-p-q}C_{r}$ ……

$$=\frac{n!}{p!q!r!\cdots\cdots} \quad (p+q+r+\cdots\cdots=n)$$

- 8° 組分け [例] (1) 6人を2人, 4人に組分けする仕方は 6C2=15
 - (2) 6人を3人, 3人に組分けする仕方は $\frac{6C_3}{2!}$ =10

[別解] 特定の1人に注目し、その人の仲間2人を決めると考えて、 $_5C_2=10$ としてもよい。

| 標間| 7.-

『〈順列〉□

- (2) 7個の数字 0, 1, 2, 3, 4, 5, 6 のうち, 異なるものを使ってできる 3 桁の偶数の個数は ^(対) 個である. (愛媛大)
- (3) 1から9までの数字から5個取ってつくった順列のうち, 奇数番目に必ず奇数があるのは (東海大)(東海大)

順列の公式

$$_{n}\mathbf{P}_{r}=\mathbf{n}(\mathbf{n}-1)(\mathbf{n}-2)\cdot\cdots\cdot(\mathbf{n}-\mathbf{r}+1)$$

$$=\frac{n!}{(n-r)!}$$

は積の法則により示される.次のように r 個の箱を用意しておいて, n 個の異なるものを I つずつ入れていくと考えると

$$\therefore n P_r = n(n-1)(n-2) \cdot \cdots \cdot (n-r+1)$$

ててで、r=n のとき

$$_{n}P_{n}=n(n-1)(n-2)\cdot\cdots\cdot3\cdot2\cdot1=n!$$

であるが,

$$_{n}\mathbf{P}_{r}=\frac{n!}{(n-r)!}$$

の式に、r=n を代入すると

$$_{n}P_{n}=\frac{n!}{0!}$$

となる. $\frac{n!}{0!}$ =n! となるためには、0!=1 でなければならない、そこで、

$$0! = 1$$

と約束する.

- (1) 全部で
- $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$

そのうち、偶数であるのは末位の数字が2または4の2通りがあり

 $2\times4!=2\times24=48$

(2) 末位が0のとき, 3桁の偶数となるのは ₆P₂ 通り

末位が2(または4,6)のとき,最高位が0とならないことより5.5通り

$$P_2 + 5.5 \times 3 = 105$$

(3) 前半は、まず3か所の奇数番目に奇数を入れて、2か所の偶数番目に残り6つの数字から2個を取ってきて入れればよい。

$$_{5}P_{3}\times_{6}P_{2}=60\times30=1800$$

後半は,"奇数は必ず奇数番目"ということは"偶数番目は必ず偶数"ということであるから,前半と同様にして

$$_{4}P_{2}\times_{7}P_{3}=12\times210=2520$$

解答 (方) 120 (イ) 48 (ウ) 105 (エ) 1800 (オ) 2520

===-▶演 習◀=====

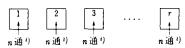
- 【8】 n個のものからr個 (r>1) 取り出して並べる方法が 60 通り ある とき、nとrの値はいくらか。 (三重大)
- 【9】 0, 1, 2, 3, 4, 5 の6つの数字がある.
 - (1) これら全部を使ってできる6桁の数はいくつあるか.
 - (2) この6桁の数のうちで、5の倍数はいくつあるか. (北海道薬大)

- 標間 8. -

☞〈重複順列〉 ==

大きさの異なる5つの円板がある.

- (1) それぞれの円板に赤, 青の2色のうちのどちらか1色を塗ることにすれば、塗り方は (7) 通りある.
- (2) それぞれの円板に赤,青,黄の3色のうちどれか1色を塗ることにすれば、塗り方は(A)______」通りある.


それらのうち、3色全部が使われるような塗り方は

め 通りある.

(共通1次試験)

重複順列の問題である。相異なるn種のものからくり返し取ることを許してr個取る順列の数 $n\Pi_r$ は

積の法則から $n\Pi_r = n \cdot n \cdot \dots \cdot n = n^r$

(1) 5枚ともそれぞれ赤または青の2通りの塗り方があるので

 $2^5 = 32$

(2) 前半は, 5枚ともそれぞれ赤, 青, 黄の3通りの塗り方があるので 33=243

また、5枚の円板を1色または2色で塗り分ける仕方は

$$3 + {}_{3}C_{2}(2^{5} - 2) = 93$$

[1色のみ]+[2色の取り方]×[2色の塗り方]

よって、3色全部が使われるのは

$$243 - 93 = 150$$

解答 (1) (ア) 32 (2) (イ) 243 (ウ) 150

—▶演 習◀——

【10】 (1) n 個の違ったもの, x_1 , x_2 , ……, x_n がある。 この中から, 少なくとも 1 個を取って集合をつくると, 全部でいくつできるか。

(広島大)

(2) 集合 $\{a_1, a_2, \dots, a_9\}$ の部分集合のうち、 $\{a_1, a_9\}$ を含む集合は全部でいくつできるか. (福岡大)

- | 標間| 9. -

次の(a),(b)を満たす言語を考える.

- (a) 相異なる7個の文字が用いられ、その内訳は母音字が3個、子音字が4個である。
- (b) 次の4条件が満たされるように文字が1列に並んだものを単語という. ただし, 1個の文字からなる場合も含む.
 - (イ) 8 個以下の文字からなる.
 - (ロ) 必ず母音字で終わる.
 - (ハ) 母音字が続いて並ぶことはない.
 - (=) 子音字が続いて並ぶことはない.

この言語について,次の問いに答えよ.

- (1) 4文字からなる単語は何個あるか.
- (2) 相異なる5文字からなる単語は何個あるか.
- (3) この言語における単語の総数を求めよ.

(北 大)

いろいろな条件がついているが、この条件を満たすように並べるには2段ロケット式に考えればよい.

(1)は、まず母音を並べて、次に左端と中間

(母) (母)

に子音を入れればよい. 同じ文字を何回使ってもよい.

(2)は、毎(子)母(子)母)と並ぶように、母音、子音を選んでいけばよい。

解答 (1) 子母子母と並ぶのは 32・42=144(個) ……(答)

- (2) 相異なる 5 文字が母子母子母と並ぶのは ₈P₈·₄P₂=72 (個) (答)
- (3) (1)と同様として

文字の数	1	2	3	4	5	6	7	8
単語の数	3	3.4	32.4	32.42	33.42	33 · 43	34 - 43	34 - 44

 \therefore 3+12+36+144+432+1728+5184+20736=28275 (個)(答)

[11] a, b, c, d, e, i, o, u の8文字を並べるのに, 子音字すなわち b, c, d の直後には, 必ず母音字すなわち a, e, i, o, u がくるような並べ方は (東北学院大)

標間 10. -

-----〈同じものを含む順列〉-

- (1) SCHOOL の6文字を全部並べてできる順列は、
 - (i) 全部で何通りあるか.
 - (ii) そのうちOが2文字続かないものは全部で何通りある th. (立教大)
- (2) **HOKKAIDO** の 8 文字から 7 文字を取り出して 1 列に並 べる方法は全部で何诵りあるか, (小樽商大)

aがp個, bがq個, cがr個, ……と同じものを含む合計 n 個 $(n=p+q+r+\cdots)$ のものの順列は

$$\frac{n!}{p!q!r!\cdots\cdots}$$

である.

なぜなら、求める順列の総数をxとし、順列のうちの1つ、例えば aaahahbc·····

について考える. 仮りに p 個の a がすべて異なるものとすれば、それらを 入れかえることにより p! 個の順列ができる. b についても a! 個の順列 ができ、他についても同様であるから、積の法則によりx個の順列1つ1つについて $(p!q!r!\cdots)$ 個の順列ができる。全体では

$$x \times (p!q!r!\cdots\cdots)$$

個の順列ができる。一方、 n 個の文字がすべて異なるなら、その順列の数 は n! に等しいから

$$x \times (p!q!r!\cdots) = n!$$

$$\therefore x = \frac{n!}{p!q!r!\cdots}$$

「別証」 n個の番号のついた箱を用意しておいて、p個のaを箱に1つず つ入れる、次はあいている箱にq個のbを入れる、……と考えていくと

$$\begin{bmatrix} 1 & 2 & 3 & 4 & \dots & n-1 \\ n & b & a & \dots & n-1 \end{bmatrix} \begin{bmatrix} n & b & a \\ n & b & a \end{bmatrix}$$

$${}_{n}C_{p} \cdot {}_{n-p}C_{q} \cdot {}_{n-p-q}C_{r} \cdot \dots \dots$$

$$= \frac{n!}{p!(n-p)!} \cdot \frac{(n-p)!}{q!(n-p-q)!} \cdot \frac{(n-p-q)!}{r!(n-p-q-r)!} \cdot \dots$$

$$= \frac{n!}{p!q!r! \cdot \dots \cdot \dots}$$

22 第1章・場合の数

といった具合に組合せを利用してもよい.

解答 (1) (i) Oが2文字入っているから

$$\frac{6!}{2!}$$
=360 通り(答)

(ii) Oが2文字続くものは 5!=120 通り

(2) 8文字から0またはKを除く場合は $\frac{7!}{2!}$,そのほかの文字を除く

場合は $\frac{7!}{2!2!}$ であるから

$$\frac{7!}{2!} \times 2 + \frac{7!}{2!2!} \times 4 = 2 \times 7! = 10080$$
 通り ……(答)

(1) (i) 2つのOの場所をまず決めると考えて C2・4!=15・4!=360

としてもよい.

O以外の4つの文字が1~6番の中で何番目にくるかを考えて、 $_6P_4$ = $6\cdot5\cdot4\cdot3$ =360 (残りの番号の所にOがくる)と考えてもよい・

(ii) もいろいろの考え方がある。○以外の4つの文字の並べ方は4!この前後と〈あいだ〉5個の中から2つを選んで○を入れると考えて4!×sC。=24×10=240

(2) 7文字でつくった順列に残った1文字を右端につけると8文字の順列ができる。こうしてできる7文字の順列と8文字の順列は互いに1対1対応する(8文字の順列の右端をとると7文字の順列). したがって、求める総数は8文字の順列を数えても同じであるから

$$\frac{8!}{2!2!} = 10080$$

——▶渖 習◀~

(注) この方法は7文字だから使えるのであって,6文字となると8文字の順列とは1対1対応せずダメ.

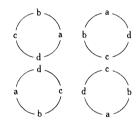
[12]	MATSUSAKA の9文字を全部使って1列に並べるとき, 異なる並べ
方に	は通りある.そのうち3文字のAが連続している並べ方は
诵	りあり、列の両端に同じ文字がある並べ方は「――」通りある。

(松阪大)

∞〈円順列〉。

両親と子供とで6人が円形テーブルに座るとき,次の問いに答えよ.

- (1) 座り方は何通りあるか.
- (2) 両親が隣り合わせに座る場合には何通りあるか.
- (3) 両親が向かい合って座る場合には何通りあるか.


(広島文教女大)

相異なるn個のものを円形に並べたもの(円順列)の総数は (n-1)!

である. なぜなら、相異なる n 個のものを 1 列に並べた総数

は n! である. このときは, 例えば abcd と dabc は異なる順列とみなしているが, 円形に並べると同じものである (右図の4つはすべて同じ). つまり, n! のうちn個ずつが同じものなのだから, 求める円順列の総数は

$$\frac{n!}{n} = (n-1)!$$

である.

解答 (1) 6人の円順列を求めて

(6-1)!=120 通り

....(答)

(2) 両親を1人とみて円順列をつくると(5-1)!=4!, 両親の並び方は 2通りあるから

……(答)

(3) 両親が向かい合って座った後、残り4つの席に子供たちが座る仕方を求めて

4!=24 通り

……(答)

=▶演 習◀=

【13】 4組の婚約者がいる. それぞれの婚約者が隣り合って円卓のまわりに座るとき、その座り方は──通りである. (三重大)

- 優間 12. —

男子5人と女子2人がいる。このとき、

- (1) 2人の女子が隣り合わないように、この7人が円周上に並ぶ並び方は「四一一通りである。
- (2) 両端に男子がいるように、この7人が横に1列に並ぶ並び 方は(4) 通りである.
- (4) (3)の並び方のうちで、特定の男女 1 組が隣り合う並び方は (東 大)

精講

(1) 男子 5 人を円周上に並べておいて, できた 5 つの間に女子が入る.

 $(5-1)! \times {}_{5}P_{2} = 24 \times 20 = 480$

(2) 男子5人が並んだ後に,女子が1人ずつ入る。最初の女子が入れる場所は4か

男男男男男

所,次の女子は5か所となるから 5!×4·5=2400

女

- (3) (2)と同じように考えて 5!×₄P₂=1440
- (4) 特定の男女の女子の隣りに並ぶ男子の 選び方は4通りで,この3人の並び方は 2通りである.この3人を1組として,

男女男人男人

女

残り3人の男子と合わせて並んだ後,残

りの1人の女子が入る. (4×2)×4!×3=576

解答 (1) (才 480 (2) (4) 2400 (3) (力) 1440 (4) (工) 576

- **[14]** a, b, c, d, e, f, g, h の8文字すべてを並べるときの以下の順列 の数を求めよ. 解は階乗の形でもよい.
 - (1) 円周上に並べる場合 (2) 1列に並べ、a, bが隣り合う場合
 - (3) 1列に並べ, a, b間に他の文字が1個入る場合 (名古屋学院大)

標間 13.

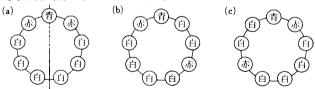
∞〈じゅず順列〉∞

赤球2個、白球6個、青球1個がある。このとき、次の問い に答えよ.

- (1) これらを1列に並べる方法は何通りあるか.
- (2) これらを円形に並べる方法は何通りあるか、
- (3) これらを糸でつないで首輪を作るとき、全部で何通りでき るか.

- (2) 円順列は1つを固定することにより線順列になおせる.
- (3) じゅず順列だからといって、(2)の総数を2で割ればよい というわけにはいかない.

(1) 同じものをそれぞれ2個, 6個ずつ含む9個の順列ゆえ


$$\frac{9!}{2!6!}$$
=252 通り

……(答)

(2) 青球1個を固定して考える. このとき, 求める 円順列の数は、残り赤球2個、白球6個の合計8 個の順列の数に等しい.

$$\frac{8!}{2!6!} = 28$$
 通り ……(答)

(3) (2)で求めた円順列のうち、左右対称なものは4 個あり、非対称なものは 28-4 個ある。

首輪では、(a)は裏返しにしても変わりないが、(b)と(c)は同じである.

$$4+\frac{28-4}{2}=16$$
 通り ·····(答)

-- ▶ 渖 習 ◀--

【15】 白石 8 個と黒石 7 個を輪に並べる方法は「_____」通りある.

(室蘭工大)

層間 14.

-- 〈組合せ〉 --

「0000」から「9999」までの 4 桁の電話番号のうち、 4 つの数字が全部異なるものは ∞ 個ある. また、 4 つの数字の値がだんだん大きくなるものは ∞ 個あり、数字 5 と 6 の両方を含む番号は ∞ 個あることになる. (早大)

精講

異なるn個のものからr個をとる組合せの総数 nCr は

$$_{n}C_{r} = \frac{n!}{r!(n-r)!} = \frac{_{n}P_{r}}{r!} (n \ge r)$$

これは"順列を束ねたもの"として得られる。 つまり、 $_n$ C $_r$ 個ある組合せの1 つ1 つに対して順列は r! 個できるから $_n$ C $_r \times r$! $= _n$ P $_r$ また、r=0 のときは $_n$ C $_0$ =1 と定める.

(プ) 10個の数字から4個を取ってきて並べればよい.

$$_{10}P_{4} = 10 \cdot 9 \cdot 8 \cdot 7 = 5040$$

(イ) 0~9の中から4個を選んで大小の順に並べればよい.

$$_{10}C_4 = \frac{10!}{4!6!} = 210$$

(ウ) 4 桁の電話番号全体を Ω ,数字 5,6 を含む番号の集合をそれぞれA, B とすると、5 と6 の両方を含む番号の個数は

$$n(\mathcal{Q}) - n(\overline{A \cap B})$$
 (は補集合を表す)
= $n(\mathcal{Q}) - n(\overline{A} \cup \overline{B})$ (ド・モルガンの法則)
= $n(\mathcal{Q}) - (n(\overline{A}) + n(\overline{B}) - n(\overline{A} \cap \overline{B}))$
∴ $10000 - (9^4 + 9^4 - 8^4) = 974$

解答 (ア) 5040 (イ) 210 (ウ) 974

▶演 習◀=

【16】 1から10までの自然数の順列 $a_1a_2a_3$ …… a_{10} で、次の条件 $a_1 < a_4 < a_7 < a_{10}$, $a_2 > a_5 > a_8$, $a_3 < a_6 < a_8$

をすべて満たすものは何通りあるか・

(学習院大)

[17] 5名の男子と4名の女子からなるグループから任意に3名を選んでその中に必ず男女が混じっている選び方は「一」通りである。(神奈川大)

標間 15.

■〈重複組合せ〉■

- (1) 4桁の電話番号のうち、同じ数字が2つまでは並んでもよい(しかし異なる数字同士は小さいものから大きいものへと並んでいる)とすると、そのような電話番号は「四」「個ある。 (中央大)
- (2) x+y+z=8 を満たし、 $x\ge0$ 、 $y\ge0$ 、 $z\ge0$ である整数解 の組は全部で (0) 個あり、x>0、y>0、z>0 である整数解の組は全部で (0) 個ある.

相異なるn種のものからくり返し取ることを許してr個取るA日本の総数 A

$$_{n}\mathbf{H}_{r} = _{n+r-1}\mathbf{C}_{r}$$

である.

このとき, rは n<r であってもかまわない.

これはいろいろな説明ができるが、次のように考えるとよいだろう.

例えば $\{1, 2, 3\}$ の3種類のものから重複を許して取る5個の取り方は、5個の \bigcirc を並べたところに入れる2個のクサビ \triangle の打ち方に置きかえられる. つまり

といった具合であり、 \bigcirc 5 個、 \triangle 2 個の 7 個からできる列の \bigcirc の位置を決めればよい、したがって $_{7}$ C $_{8}$ である。

一般に $_{n}$ H $_{r}$ は \bigcirc r 個, \triangle n-1 個の列のつくり方の総数であり $_{n}$ H $_{r}=_{n+r-1}$ C $_{r}$

(1) 4 桁の電話番号 $a_1a_2a_3a_4$ は、 $a_1 \le a_2 \le a_3 \le a_4$ であり、同じ数字が並ぶのは 2 つまでという制限がついている.

同じ数字がいくつ並んでもよいとすれば

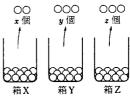
$$_{10}H_4 = _{18}C_4 = 715$$

同じ数字が3つだけ並ぶものは aaab, abbb の2タイプで

$$2 \times_{10} C_2 = 90$$

同じ数字が4つ並ぶものは10個あるから

$$715 - (90 + 10) = 615$$


28 第1章・場合の数

(2) たくさんの球が入った箱X, Y, Zを考える。箱Xから球をx個取り,箱Yからy個,箱Zからz個の球を取る。

その合計が 8. すなわち

$$x+y+z=8$$

このとき,1 個も取らない箱があってもよいとすると, $x \ge 0$, $y \ge 0$, $z \ge 0$ であり,これは,3 種類の中から8 個取る重複組合

$$_{8}H_{8} = _{10}C_{8} = 45$$

次に、x>0, y>0, z>0 とは $x\ge1$, $y\ge1$, $z\ge1$ ということであり $x'=x-1\ge0$, $y'=y-1\ge0$, $z'=z-1\ge0$

とおくと

せにほかならない.

$$(x'+1)+(y'+1)+(z'+1)=8$$

 $\therefore x'+y'+z'=5, x'\geq 0, y'\geq 0, z'\geq 0$

これより、求める整数解の組の個数は

$$_{8}H_{5}=_{7}C_{5}=21$$

解答 (元) 615 (石) 45 (元) 21

=▶演 習◀-----

- **[18]** 各項が 1, 2, 3, 4 のどれかであるような長さ5の数の列 $(a_1, a_2, a_3, a_4, a_5)$ の全体をSとする.
 - (1) S に属する数の列の個数を求めよ.
 - (2) S に属する数の列(a_1 , a_2 , a_3 , a_4 , a_5)で, $a_5 \le a_4 \le a_3 \le a_2 \le a_1$ であるものの個数を求めよ.
 - (3) S に属する数の列 $(a_1, a_2, a_3, a_4, a_5)$ で 1, 2, 3, 4 がすべて現れるものの個数を求めよ. (東海大)
- 【19】 球と立方体の正三角錐の3種類の積み木を製造する会社があり、これらの積み木を組み合わせて10個1組のセットを作るとする.
 - (1) 全部でいくつの組合せが考えられるか.
 - (2) 3 種類の積み木のうち、球と立方体とを少なくとも1 個ずつ含む組合 せはいくつか。 (麻布大)

標間 16. -

■〈整数の組合せ〉。

整数 $1, 2, 3, \dots, 100$ から 2 個の異なる数を選んでつくる組合せのうち、次の組合せは何通りあるか。

- (1) 積が3の倍数になる組合せ.
- (2) 積が4の倍数になる組合せ.

(茨城大)

解答 (1) Aを全体集合とし、 $B=\{3$ の倍数 $\}$ 、C=A-B とおく、n(A)=100、n(B)=33、n(C)=67

積が3の倍数となるのは、Bの要素を2つ取るときと、B、Cの要素を1つずつ取るときである.

$$_{33}C_2 +_{33}C_1 \cdot_{67}C_1 = 33(16+67) = 2739$$
 通り ······(答)

(2) $D = \{ 奇数 \}$, $E = \{ 4m \}$, $F = \{ 4m + 2 \}$ (mは整数) とする.

$$n(D) = 50$$
, $n(E) = 25$, $n(F) = 25$

積が4の倍数となるのは(偶数2個)またはD, Eの要素を1つずつ取るときである. $_{50}C_2 + _{50}C_1 \cdot _{25}C_1 = 25(49+50) = 2475$ 通り ……(答)

[別解] 余事象を考え、全体から不都合なものを除く、としてもよい。

(1) 2個の数の積が3の倍数とならないのはCより2個を取 + ストミ

$$_{100}C_{2} - _{67}C_{2} = 4950 - 2211 = 2739$$

(2) 積が4の倍数とならないのは(奇数2個)またはD, Fの要素を1つず つ取るときであるから

$$= \frac{100 \cdot 99}{2} - \left(\frac{50 \cdot 2 + 50 \cdot C_1 \cdot 25 \cdot C_1}{2}\right)$$

$$= \frac{100 \cdot 99}{2} - \left(\frac{50 \cdot 49}{2} + 50 \cdot 25\right)$$

$$= 2475$$

【20】 1, 2, 3, ……, 20 から 3 個の異なる数を選んでつくる組合せのうち, 2 個が偶数で 1 個が奇数である組合せは 通り, 積が偶数である組合せは 通り, 積が 8 の倍数である組合せは 通りある. (慶 大)

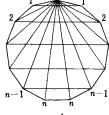
- ■ 概 間 17.

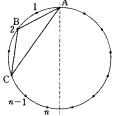
---〈三角形の個数〉-

精講

3点を選べば三角形はできるので

$$_{2n+1}C_3 = \frac{1}{3}n(4n^2-1)$$


このうち, 二等辺三角形は 2n+1 個の頂点1 au 1 つに対してn 個できる. ダブリに注意してみると, 2n+1 が3 の倍数でないときは正三角形ができないので


$$(2n+1)n$$

個の二等辺三角形ができるが、2n+1が3の倍数のときは正三角形ができて、上の方法では1つの正三角形が3回重複して数えあげられる.よって、この場合の個数は

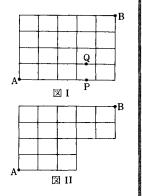
$$(2n+1)n-2\frac{2n+1}{3}=\frac{1}{3}(2n+1)(3n-2)$$

また鈍角三角形 ABC で、∠Bを鈍角、A、B、C はこの順に反時計まわりに並んでいるとする・

1つの頂点Aを固定し、その点を通る外接円の直径を考えると、直径の他端は頂点ではない。他の2頂点B, Cは、半円の一方にあるn個の頂点のうちの2点になっている。Aに対して、B, Cのとり方はnC₂となる。

$$(2n+1)_n C_2 = \frac{1}{2}(2n+1)n(n-1)$$

こう考えると、重複のないことは明らかであろう.


解答 (7) $\frac{1}{3}n(4n^2-1)$ (4) (2n+1)n (7) $\frac{1}{3}(2n+1)(3n-2)$

 $(x) \frac{1}{2}(2n+1)n(n-1)$

〈最短経路〉≈

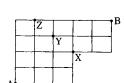
標間 18.

- (1) 図 I のように, 東西に 5 本, 南北 に6本の道路をもつ長方形の土地が ある、点Aから点Bまで最短距離で 行くには何通りの方法があるか.
- (2) 図 T の点 P を 通って、 点 A から点 Bまで最短距離で行くには何通りの 方法があるか.
- (3) 図Iの点Qを通って、点Aから点 Bまで最短距離で行くには何通りの 方法があるか.

(4) 図Ⅱのような東西、南北の道路をもつ土地がある、点Aか ら点Bまで最短距離で行くには何通りの方法があるか.

(宇都宮大)

解答 (1) → 5個, ↑ 4個の順列と考え られるから


$$\frac{9!}{5!4!}$$
=126 通り ……(答)

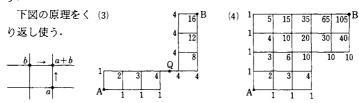
(右図は $\rightarrow \rightarrow \uparrow \uparrow \rightarrow \uparrow \rightarrow \uparrow \rightarrow$ の例)

(2) $A \rightarrow P \rightarrow B$ は、 $A \rightarrow P$ は1通りだから $\frac{5!}{4!}$ =5 通り ……(答)

(3) A→Q→Bとなるのは

$$\frac{4!}{3!} \times \frac{4!}{3!} = 16$$
 通り ……(答)

(4) AからBに行くには、右図のX、Y, Z のいずれか1つを必ず通る. $A \rightarrow X \rightarrow B$, $A \rightarrow Y \rightarrow B$. $A \rightarrow Z \rightarrow B$ と 分けて

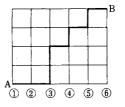

$$\frac{5!}{3!2!} \times \frac{4!}{2!2!} + \frac{5!}{2!3!} \times \frac{4!}{3!} + \frac{5!}{4!}$$

= 60+40+5=105 通り

最短路の問題はいろいろな考え方ができる. 解答では "同じ ものを含む順列"と考えたが次のようにしてもよい.

1° 数えあげる 素朴だが有力な手段である.(3),(4)を示

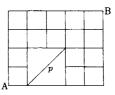
寸.



2° 組合せ (1)についていうなら, → 5個, ↑ 4個の合計 9個のうち, →の場所を決めればよいから

$$_{9}C_{5} = 126$$

3° 重複組合せ これも(1)で説明しよう。右図のようにタテの道に番号をつけると経路は6種類の道から重複を許してタテの区画を4個選べばよい(右図は③,④,④,⑤の選択)。よって、求める総数は


$$_{6}H_{4} = _{6+4-1}C_{4} = 126$$

これを一般化しよう、東西 p+1 本、南北 q+1 本の碁盤の目のような道路で南西端から北東端までの最短路は、 $\rightarrow p$ 個、 $\uparrow q$ 個の並べ方の数だけあり、これは 2° で考えたように $p_{+q}C_q$ とすることも、ここで考えたように $p_{+1}H_q$ とみることもできる。そこで、 $p_{+1}H_q=p_{+q}C_q$ において、p+1=n、q=r とおけば、 $p_{+q}H_q=p_{+q}H_q=p_{+q}H_q$ が得られる。

- **【21】** 図のような路を通ってA地点からB地点まで行くのに
 - (1) 最短距離の路は何通りあるか.
 - (2) 対角線の路 p は通れないとした場合は最短 距離の路は何通りあるか.

(東北学院大)

· | 標 間 | 19.

■〈写像の個数〉=

2つの集合 $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$ がある.

- (1) AからBへの写像は \Box 通りある.
- (2) AからBへの1対1写像は \square 通りある.
- (3) AからBへの写像fで $f(1) \le f(2) \le f(3)$ となるものは 通りで、 $f(1) \le f(2)$ または $f(2) \le f(3)$ となるもの

は 通りある.

(4) BからAへの上への写像は \square 通りある. (文命館大)

(1) Aのおのおのの要素aに、Bの要素bを1つずつ対応させる規則fをAからBへの写像という。

f(1), f(2), f(3) の決め方はそれぞれ 4 通りあるから $4^3=64$

(2) 写像 $f:A\rightarrow B$ で、Aの任意の要素 a_1 、 a_2 に対し $a_1
ightharpoons a_2$ ならば $f(a_1)
ightharpoons f(a_2)$

となるような写像 fを1対1写像という.

f(1) の決め方4通りに対して、f(2) は3通り、さらに f(3) は2通り、

$$4\times3\times2=24$$

(3) Bより像となる3つを選んで(重複を許す)大小の順に並べる.

$$_{4}H_{3} = _{6}C_{3} = 20$$

また、 $f(1) \le f(2)$ となるものは、f(1)、f(2) に対し f(3) は 4 通りで $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{6}$ $_{7}$ $_{7}$ $_{8}$ $_{1}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{5}$ $_{5}$ $_{5}$ $_{5}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{5}$ $_{5}$ $_{5}$ $_{5}$ $_{7}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{5}$ $_{5}$ $_{5}$ $_{7}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{5}$ $_{5}$ $_{5}$ $_{5}$ $_{5}$ $_{5}$ $_{5}$ $_{7}$

あり、f(2)≤f(3) となるものも 40 通りあるから、求める総数は 40+40-20=60

(4) 写像 $f: B \rightarrow A$ が上への写像とは

Aの任意の要素 a に対し、a=f(b) となる B の要素 b が存在することである.

Bの要素には像が一致するものが2つあり,その像の取り方は $_3C_1$ 通りあるから

$$_{4}C_{2}\cdot_{3}C_{1}\times2=\frac{4\cdot3}{2}\cdot3\times2$$

=36

6

~~ » -	2 4 . 2	•			
解答 (1	1) 64 (2) 24	(3) 20, 60	(4) 36		
	(3)は重複組合	うせHを使	わずに次の)ように考えても	よい.
研究	f(1) = f(1)	2) = f(3)	のタイプ	4 通り	
שואט	f(1) = f(1)	(2) < f(3)	のタイプ	····· ₄ C ₂ =6 通り)
	f(1) < f(1)	2) = f(3)	のタイプ	····· ₄ C ₂ =6 通り)
	f(1) < f(1)	(2) < f(3)	のタイプ	····· ₄ C ₃ =4 通)
よって, f($(1) \leq f(2) \leq f($	3) となる	ものは		
	4+6+6+	4=20 通り)		
また,	f(1) = f(1)	2), $f(3)$	のタイプ	·····4×4=16 j	重り
	f(1) < f(1)	(2), f(3)	のタイプ	$\cdots \cdot \cdot$	通り
f(1), f(2))≦ƒ(3) も同し	ごく考えて			
	(16+24)×	2-20=60	通り	
		 ▶演	習◀		
[22] $M = \{1$	1, 2, 3, 4},	$N = \{0, 1,$	2, 3, 4,	5, 6, 7, 8, 9	トとする.
M から N イ	への写像ƒにつ	いて	□の中に通	適当な答えを入れ	なさい.
(1) 写像 f	は全部で	□ 個ある.			
(2) $f(1) <$	f(2) < f(3) <	ƒ(4) を満	たす写像」	f は全部で] 個ある.
(3) ある x	<i>∈M</i> に対して	f(x) = x	となるよ	うな写像 f は全	鄒で □
個ある.					
(4) ƒの値	域,すなわち	$\{f(x) x \in \{f(x) x \in \{f(x$	■ <i>M</i> } がち	。 ようど2個から	なる写像 ƒ
は全部で	[] 個ある				(南山大)
[23] $A = \{-1\}$	-1, 0, 1}, B	$=\{-2, -$	1, 0, 1,	2} とし, Aから	, B の中へ
の写像をい	ろいろ考える.				
次の問い	に答えよ.				
(1) 1対1	となる写像の個	■数は□□	□ である.	•	
(2) 写像 f	が、Aのすべて	ての要素 x	, y につい	f(xy) = f(xy)	x)f(y) を
満たすと	する.f(0)≒() ならば,	すべての x	について $f(x)$ =	ع=
なる. f((1)≠1 ならば	,すべての	x k \supset k \sim	f(x) =] となる.
したがっ	τ , $f(xy) = f$	f(x)f(y)	を満たす写	『像の個数は □	□ である.
(3) Aのす	べての要素 x k	こついて,	g(x)-2x	が A の要素とな	る写像gの
個数は□	である.				(日本大)

標問 20. -

----〈分配〉--

- (1) 相異なる 6 個のものを A. B. Cの 3 人に分配するとき.
 - (i) Aに4個、Bに1個、Cに1個分配する方法は 通りある.
 - (ii) Aに3個, Bに2個, Cに1個分配する方法は「 通りある.
 - (iii) Aに2個、Bに2個、Cに2個分配する方法は「 通りある.
 - (iv) A, B, Cの各人が、少なくとも1個はもらうような 分配の方法は、全部で 通りある. (慶 大)
- (2) 3人の子供に9個のみかんを与える方法はいく通りある か. ただし、3人とも少なくとも2個は与えられ、不平等は あってよいものとする. (松山商大)

分配の問題 1° 異なるn個のものをA、B、Cの3人に分 配するには、Aにp個、Bに残りn-p 個からq 個取れば、 残りはCのものとなるので ${}_{n}C_{p\cdot n-p}C_{q}$

- 2° 同じn個のものをA, B, Cの3人に分配するには, 3人の個数をa, b, c とすると分配の仕方は a+b+c=n ($a\geq 0$, $b\geq 0$, $c\geq 0$) を満たす整数解の組の数と一致する. すなわち。H。通りある. (2)で、子供は区別し、みかんは区別しないのは常識というものである.
 - 解答 (1) (i) ₆C₄×₉C₁=30 ……(答) (ii) $_{6}C_{3}\times_{3}C_{2}=60$ ……(答) (iii) $_{6}C_{2}\times_{4}C_{2}=90$ ……(答)
 - (iv) (i), (ii), (iii)より各人が少なくとも1個はもらう方法は $30 \times 3 + 60 \times 6 + 90 = 540$
 - (2) 3人とも少なくとも 2 個はもらうので残り $9-2\times3=3$ 個の分配の 仕方がわかればよい、これは a, b, c を未知数とする方程式

a+b+c=3 ($a \ge 0$, $b \ge 0$, $c \ge 0$)

の整数解の組の数と同じで $_8H_3=_5C_3=10$ 通り ……(答)

一 標 問 21. ————	組分け〉
6人を3組に分けるについて,	
(1) 2人ずつ3組に分ける方法の数はである.	
(2) 1人, 2人, 3人と分ける方法の数は であ	る.
(3) 3 組に分ける方法の総数は [] である. ただ	し,どの
組にも1人は属するものとする.	
(4) (3)のうち,ある2人が同じ組に入る場合の数は[
ಹ ತ.	
(5) (3)のうち、ある3人が同じ組に入る場合の数は[で
ある . (立	(命館大)
(4) ## 1 0 HT 0 F 0 + 1/4 F \(\tilde{X} \)	
(1) 特定の1人の相手の見つけ方が5通り, 残り4人のうちの特定の1人の相手の見	
精講 つけ方が3通りであるから	
5.3=15	
『参考』 A. B. C の3組に2人ずつ分ける方法は) (
${}_{B}C_2_{A}C_2$	
である. これは, まず3組に分けA, (2人)	.) A
B, Cの組名をつけると考えてもよく $6 \wedge \longrightarrow_{x \text{in}} $ $2 \wedge \bigcirc_{x \text{in}}$	B
$x \times 3! = {}_{6}C_{2} \cdot {}_{4}C_{2} \qquad \therefore x = 15 $.) → c
${}_{6}C_{1} \cdot {}_{5}C_{2} = 60$	3!通り
3) (1, 1, 4) と分ける方法の数は ₆ C₄=15	
分け方は(1), (2)のほかは、これしかない. ∴ 15+60+1	15 = 90
4) 2人を1人とみて5人を3組に分ける.	
(1, 1, 3) と分ける方法の数は ₅C₃=10	
(1, 2, 2) と分ける方法の数は 5℃1・3℃1=15	
\therefore 10+15=25	
5) 3人を1人とみて4人を3組に分ける.	

(1, 1, 2) と分けることになるから ${}_{4}C_{2}=6$

Ⅲ. 二 項 定 理

1° 二項定理 n が正の整数のとき

$$(a+b)^{n} = \sum_{k=0}^{n} {n \choose k} a^{n-k} b^{k}$$

= ${n \choose 0} a^{n} + {n \choose 1} a^{n-1} b + {n \choose 2} a^{n-2} b^{2} + \dots + {n \choose n} b^{n}$

2° **多項定理** n が正の整数のとき

$$(a+b+c)^n = \sum_{p,q,r} \frac{n!}{p!q!r!} a^p b^q c^r$$

ただし、和は p+q+r=n, $p\ge 0$, $q\ge 0$, $r\ge 0$ となる整数 p, q, r についてのものである.

標問 22.

〈二項定理〉

- (1) 二項定理 $(a+b)^n=\sum\limits_{r=0}^n {}_n C_r a^{n-r} b^r$ が成立することを証明せよ.
- (2) $\sum_{r=0}^{n} {}_{2n}C_r$ を求めよ.

(宇都宮大)

$$(a+b_1)(a+b_2) = a^2 + a(b_1+b_2) + b_1b_2$$

$$(a+b_1)(a+b_2)(a+b_3)$$

$$= a^3 + a^2(b_1 + b_2 + b_3) + a(b_1b_2 + b_2b_3 + b_3b_1) + b_1b_2b_3$$

と考えると、 ab^2 の係数は b_ib_j の個数であり、それは ${}_3C_2$ である.

$$(a+b)^3 = a^3 + {}_3C_1a^2b + {}_3C_2ab^2 + b^3$$

同じようにして、 n 個の場合を考えると

$$(a+b_1) (a+b_2) \cdot \dots \cdot (a+b_n)$$

$$= a^n + a^{n-1} (b_1 + b_2 + \dots + b_n)$$

$$+ a^{n-2} (b_1 b_2 + b_1 b_3 + \dots + b_{n-1} b_n)$$

$$+ \dots + b_1 b_2 \cdot \dots \cdot b_n$$

展開式の各項はn個の文字の積であり、 a^{n-r} に掛けられるのは b_1 , b_2 , b_3 ,, b_n からr個取った ${}_n$ Сr 個の積の和である.

よって、 $b_1=b_2=\cdots\cdots=b_n=b$ のとき、これらの和は ${}_n\mathbf{C}_rb^r$ となり

$$(a+b)^n = \sum_{r=0}^n {}_n C_r a^{n-r} b^r$$

解答 (1) 数学的帰納法で示す。

$$n=1$$
 のとき:右辺= $_1C_0a+_1C_1b=a+b=$ 左辺

$$n=k$$
 での成立を仮定: $(a+b)^k = \sum_{r=0}^k {}_k C_r a^{k-r} b^r$

$$(a+b)^{k+1} = (a+b) \sum_{r=0}^{k} {}_{k}C_{r}a^{k-r}b^{r}$$

$$= {}_{k}C_{0}a^{k+1} + \sum_{r=1}^{k} ({}_{k}C_{r-1} + {}_{k}C_{r})a^{k+1-r}b^{r} + {}_{k}C_{k}b^{k+1}$$

$$= {}_{k+1}C_{0}a^{k+1} + \sum_{r=1}^{k} {}_{k+1}C_{r}a^{k+1-r}b^{r} + {}_{k+1}C_{k+1}b^{k+1}$$

$$= \sum_{k=1}^{k+1} {}_{k+1}C_{r}a^{k+1-r}b^{r}$$

n=k+1 でも成立.

よって, すべての自然数nについて成り立つ.

(2)
$$\sum_{r=0}^{2n} {}_{2n}C_r = (1+1)^{2n} = 4^n$$

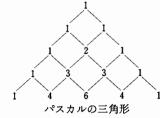
$$_{2n}C_r = _{2n}C_{2n-r}$$
 だから

$$\sum_{r=0}^{n} {}_{2n}C_r = \sum_{r=0}^{n} {}_{2n}C_{2n-r} = \sum_{r=n}^{2n} {}_{2n}C_r$$

$$\therefore \sum_{r=0}^{n} {}_{2n}C_{r} = \frac{1}{2} \left\{ \sum_{r=0}^{2n} {}_{2n}C_{r} + {}_{2n}C_{n} \right\} \\
= \frac{1}{2} \left\{ 4^{n} + \frac{(2n)!}{(n!)^{2}} \right\} \dots \dots$$

研究

(1)の証明で


$$_{n}C_{0} = _{n+1}C_{0}$$
, $_{n}C_{n} = _{n+1}C_{n+1}$, $_{n}C_{r-1} + _{n}C_{r} = _{n+1}C_{r}$ ······(*) が知いられている.

特に(*)式は二項定理において本

質的な役割をもつ.

$${}_{n}C_{r-1} {}_{n}C_{r}$$

を図示すると右図のようになり $(a+b)^n$ での係数が現れる.

標間 23.

一項係数〉。

……(答)

- (1) $(x+y)(2x^2-y)^{10}$ の展開式における x^7y^7 の係数を求め よ. (神奈川大)
- (2) n を正の整数とする. $\left(4x^3 \frac{1}{2x^2}\right)^n$ を展開したとき、定数項が存在するような最小のnに対し、その定数項を求めよ.
- (3) $(x^2+x+1)(x+\frac{1}{x})^n$ の展開式の定数項を, n=2, 3, 10 の場合にそれぞれ求めよ. (北見工大)
- (4) 2121 を 400 で割ったときの余りを求めよ. (京都教育大)

解答 (1) $(2x^2-y)^{10}$ の一般項は ${}_{10}C_k(2x^2)^k(-y)^{10-k}$ k=3 で x^6y^7 となるときに限り、与式に x^7y^7 が現れる.

$$_{10}$$
C₃·2³·(-1)⁷=-960 ······(答)

(2) 一般項は ${}_n C_k \cdot 2^{3k-n} \cdot (-1)^{n-k} \cdot x^{5k-2n}$ 定数項となるのは $k=\frac{2n}{5}$ が整数のときで、最小のnは 5

$$_{5}C_{2}\cdot 2\cdot (-1)^{3}=-20$$
(答)

(3) $p_n = (x^2 + x + 1) \left(x + \frac{1}{x} \right)^n$ の一般項は ${}_n C_k (x^2 + x + 1) x^{n-2k}$ p_2 の定数項は k = 1, 2 のとき ${}_2 C_1 + {}_2 C_2 = {}_3 C_2 = 3$ ……(答) p_3 の定数項は k = 2 のとき ${}_3 C_2 = 3$ ……(答) p_{10} の定数項は k = 5, 6 のとき

$${}_{10}C_5 + {}_{10}C_6 = {}_{11}C_6 = \frac{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7}{5 \cdot 4 \cdot 3 \cdot 2} = 462$$
(答)

(4)
$$21^{21} = (20+1)^{21} = \sum_{k=0}^{21} {}_{21}C_k \cdot 20^{21-k} \cdot 1^k$$
$$= 20^2 \sum_{k=0}^{19} {}_{21}C_k \cdot 20^{19-k} + {}_{21}C_{20} \cdot 20 + {}_{21}C_{21}$$
$$= (400 \oplus E) + 21 \cdot 20 + 1$$
$$= (400 \oplus E) + 21$$

よって, 2121 を 400 で割った余りは 21

- 櫻間 24.

多項定理〉

 $(a+b+c+d)^7$ の展開式について、次の問いに答えよ。

- (1) p, q, r, s が p+q+r+s=7 を満たす負でない整数であるとき、項 $a^pb^qc^rd^s$ の係数を求めよ.
- (2) 係数の最大値を求めよ. また, そのときの *p*, *q*, *r*, *s* を 求めよ. (東北大)

精講

(1) 多項定理と呼ばれるもので、証明は二項定理のときと同じである(☞ 標問 22). これにより、

$$(a+b+c+\cdots)^n$$

- の展開式も容易に理解されよう. $(a+b+c)^n$ の展開で、 $a^pb^qc^r$ (p+q+r=n)の同類項は、n個のカッコをp個、q個、r個の3つの群に類別する方法の数だけある.
- (2) $(a+b)^n$ においてはn が偶数のとき中央項の係数が最大,n が奇数のときは,中央の2 項の係数が等しく最大となる。本問においても,p,q,r,s の値ができるだけ近いとき係数が最大となる。

解答 (1) 項 $a^pb^qc^rd^s$ の係数は7個の (a+b+c+d) のなかのp 個からa, q 個からb, r 個からc を取り,残りs 個をd として取る取り方の数であるから

$${}_{7}C_{p \cdot 7-p}C_{q \cdot 7-p-q}C_{r} = \frac{7!}{(7-p)! p!} \cdot \frac{(7-p)!}{(7-p-q)! q!} \cdot \frac{(7-p-q)!}{(7-p-q-r)! r!}$$

$$= \frac{7!}{p! q! r! s!} \quad (\because 7-p-q-r=s) \quad \cdots \cdots (\stackrel{\times}{\cong})$$

(2) (1)より x=p!q!r!s! の最小値を求めればよい.

$$p \le q \le r \le s$$
 としてよい、 $p+q+r+s=7$ より

$$s=2$$
 のとき $x=1!2!2!2!=8$

 $s=3 \text{ Obs} \quad x=p!q!r!3! \ge 2!3! = 12$

s=4 のとき $x=p!q!r!4! \ge 4! = 24$

てのとき, (p, q, r, s)=(1, 2, 2, 2), (2, 1, 2, 2),

……(答)

係数 二項定理を利用して a^pb^qc^rd^s の係数を求めてみよう。

$$(a+b+c+d)^{7} = \sum_{k=0}^{7} {}_{7}C_{k}a^{k}(b+c+d)^{7-k}$$

と展開されるから,

$$a^{p}$$
 の係数= ${}_{7}C_{p}\{b+(c+d)\}^{7-p}$

$$={}_{7}C_{p}\sum_{l=0}^{7-p}{}_{7-p}C_{l}b^{l}(c+d)^{7-p-l}$$

$$\therefore a^p b^q \circ$$
係数= ${}_7 C_p \cdot {}_{7-p} C_q (c+d)^{7-p-q}$

$$={}_7 C_p \cdot {}_{7-p} C_q \sum_{q=1}^{7-p-q} {}_{7-p-q} C_m c^m d^{7-p-q-m}$$

7-p-q-r=s であるから

$$a^{p}b^{q}c^{\tau}d^{s}$$
 の係数= ${}_{7}\mathbf{C}_{p}\cdot{}_{7-p}\mathbf{C}_{q}\cdot{}_{7-p-q}\mathbf{C}_{\tau}=\frac{7!}{p!\,q!\,r!\,s!}$

2° 項の数 係数については調べたが項の数はいくつあるのか調べておこう。ここでは $(a+b+c+d)^n$ の展開について考える。

これは各項を aPbqcrds とすると

$$p+q+r+s=n$$
, $p\geq 0$, $q\geq 0$, $r\geq 0$, $s\geq 0$

を満たす整数解の組はいくつあるかということであり、4種類のものから 重複を許してn個を取る重複組合せ

$$_4\mathbf{H}_n = _{n+3}\mathbf{C}_n$$

にほかならない.

- 【24】 $(a+b-2c)^7$ の展開式で、 $a^3b^2c^2$ の係数を求めよ. (昭和薬大)
- 【25】 $\left(x+a+\frac{1}{x}\right)^5$ を展開したとき、 x^4 の係数は負で、 x^3 の係数は 45 である。このときの定数 a の値を求めよ。 (東北敏大)
- 【26】 $(1-x+x^5)^{10}$ を展開したときの x^{11} の係数を求めよ. (京都教育大)
- 【27】 x, y, z の整式 $x^s+y^s+z^s+axyz$ がある. ただし、a は定数である. 次の問いに答えよ.
 - (1) $(x^3+y^3+z^3+axyz)^3$ の展開式における $x^3y^3z^3$ の係数を求めよ.
 - (2) $(x^3+y^3+z^3+axyz)^4$ の展開式における $x^4y^4z^4$ の係数を求めよ.

(構浜国大)

標問 25.

 $\langle (1+x)^n \rangle$

(1) ${}_{n}C_{0}-{}_{n}C_{1}+{}_{n}C_{2}-\cdots\cdots+(-1)^{n}{}_{n}C_{n}$ の値を求めよ.

(2)
$${}_{n}C_{1} - \frac{1}{2}{}_{n}C_{2} + \frac{1}{3}{}_{n}C_{3} - \dots + (-1)^{n-1}\frac{1}{n}{}_{n}C_{n}$$

$$= 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
 を証明せよ. (大阪教育大)

(3) $\sum_{r=0}^{n} r_n C_r = n \cdot 2^{n-1} \quad (n \ge 1)$ を証明せよ. (小樽商大)

精講

二項係数の関係式は

$$(1+x)^n = {}_nC_0 + {}_nC_1x + {}_nC_2x^2 + \cdots + {}_nC_nx^n$$

を利用する.

(2), (3)は $_{n+1}C_r = _nC_r + _nC_{r-1}$ を使いながら数学的帰納法で証明することもできるが

$$\int_{0}^{1} n C_{r} x^{r-1} dx = \frac{1}{r} n C_{r},$$

$$\left[\frac{d}{dx} n C_{r} x^{r} \right]_{r=1} = r_{n} C_{r}$$

より、上式の積分・微分が役立つことがわかる。

解答 (1) $(1+x)^n = {}_nC_0 + {}_nC_1x + {}_nC_2x^2 + \dots + {}_nC_nx^n$

で x=-1 とおくと

$$_{n}C_{0}-_{n}C_{1}+_{n}C_{2}-\cdots\cdots+(-1)^{n}{}_{n}C_{n}=0$$
(答)

(2) $x \neq 1$ のとき $1 + x + x^2 + \dots + x^{n-1} = \frac{x^n - 1}{x - 1}$

ここで

$$x^{n}-1 = (x-1+1)^{n}-1$$

$$= \sum_{r=0}^{n} {n \choose r} (x-1)^{r}-1$$

$$= \sum_{r=0}^{n} {n \choose r} (x-1)^{r}$$

$$\therefore \sum_{r=0}^{n-1} x^r = {}_{n}C_{1} + \sum_{r=0}^{n} {}_{n}C_{r}(x-1)^{r-1}$$

これは x=1 のときも成立する. 両辺を積分すると

$$\sum_{r=0}^{n-1} \int_{0}^{1} x^{r} dx = \int_{0}^{1} {n \choose 1} dx + \sum_{r=2}^{n} {n \choose r} \int_{0}^{1} (x-1)^{r-1} dx$$

$$\therefore \sum_{r=0}^{n-1} \left[\frac{x^{r+1}}{r+1} \right]_{0}^{1} = {}_{n}C_{1} + \sum_{r=2}^{n} {}_{n}C_{r} \left[\frac{(x-1)^{r}}{r} \right]_{0}^{1}$$

$$\therefore 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = {}_{n}C_{1} - \frac{1}{2} {}_{n}C_{2} + \frac{1}{3} {}_{n}C_{3} - \dots + \frac{(-1)^{n-1}}{n} {}_{n}C_{n}$$

(3)
$$(1+x)^n = {}_n C_0 + {}_n C_1 x + {}_n C_2 x^2 + \dots + {}_n C_n x^n$$

を微分すると

$$n(1+x)^{n-1} = {}_{n}C_{1} + 2{}_{n}C_{2}x + \cdots + n{}_{n}C_{n}x^{n-1}$$

$$x=1$$
 とおくと $n\cdot 2^{n-1}=\sum_{r=0}^{n}r_{n}C_{r}$

$$1^{\circ}$$
 [(3)の別解] $\sum_{r=0}^{n} r_{n} C_{r} = \sum_{r=1}^{n} r_{n} C_{r}$ $= \sum_{r=1}^{n} n_{n-1} C_{r-1} = n \sum_{r=0}^{n-1} n_{r-1} C_{r}$ $= n (1+1)^{n-1} = n \cdot 2^{n-1}$

ここで、公式 $r_n C_r = n_{n-1} C_{r-1}$ を使っている.

$$r \cdot {}_{n}C_{r} = r \cdot \frac{n!}{r! (n-r)!} = n \cdot \frac{(n-1)!}{(r-1)! \{(n-1) - (r-1)\}!} = n \cdot {}_{n-1}C_{r-1}$$

もう1つ別の考え方をすれば左辺をn人の中からr人のグループをつくり、その代表者を決める場合の数と考え、右辺についてはまず代表者を決め、残りからr-1人を選んでr人のグループをつくると考えることもで

2° よく知られている関係式をあげておく.

(1)
$${}_{n}C_{0} + {}_{n}C_{1} + {}_{n}C_{2} + \cdots + {}_{n}C_{n} = 2^{n}$$

(2)
$${}_{n}C_{0} + {}_{n}C_{2} + {}_{n}C_{4} + \cdots = {}_{n}C_{1} + {}_{n}C_{3} + {}_{n}C_{5} + \cdots = 2^{n-1}$$

(3)
$${}_{n}C_{0} + \frac{{}_{n}C_{1}}{2} + \frac{{}_{n}C_{2}}{3} + \dots + \frac{{}_{n}C_{n}}{n+1} = \frac{2^{n+1}-1}{n+1}$$

(1), (2)を組合せの考え方で、(3)を積分を使って説明してみよ。

=▶演 習◀=

【28】 a, b を実数 $(a \rightleftharpoons 0)$, n を正整数とし, $(ax+b)^n = c_0 + c_1 x + \cdots + c_n x^n$ で定数 $c_k(0 \le k \le n)$ を定める. このとき $c_0 + \frac{c_1}{2} + \frac{c_2}{3} + \cdots + \frac{c_n}{n+1}$ を a, b, n の式で表せ. (東海大)