数学I・Aチェック&リピート
ある範囲でつねに成り立つ2次不等式すべての〜,適当な〜が存在する判別式


問題文をクリックすると解答をみることができます.


すべての〜,適当な〜が存在する

問題文をクリックしてみて下さい.


類題演習

問題文をクリックしてみて下さい.

tについての条件が与えられているので,
不等式はtについての2次不等式として処理しましょう.

問題文をクリックしてみて下さい.

(1)は(3)のヒントになっています.

問題文をクリックしてみて下さい.

(2)「任意の実数kに対して〜」,(3)「任意の自然数kに対して〜」の違いが面白い.

問題文をクリックしてみて下さい.

「すべての〜」,「ある〜(適当な〜)が〜をみたす」の用語に慣れましょう.

問題文をクリックしてみて下さい.

f(x)のグラフは下に凸な放物線です.
(3)の「すべての整数nに対して〜」が面白い.このとき(2)が効いてきます.

問題文をクリックしてみて下さい.

「〜が存在する」,「すべての〜」,さらにはxについての集合の包含関係までを
確認する論証の総合問題になっています.

問題文をクリックしてみて下さい.

a が0であるか否かで場合分けしましょう.

問題文をクリックしてみて下さい.

(1)aは0でないので2次方程式の問題です.判別式を考えましょう.
(2)は2次不等式の問題です.aの符号に注意しましょう.

問題文をクリックしてみて下さい.

2次関数の最大値・最小値と論証の言葉「すべての〜」,「ある〜に対して」が絡んだ問題です.
(2),(3)の違いをグラフを描いて確認しておきましょう.

問題文をクリックしてみて下さい.

(1)と(2)の違いを読み取りましょう.


トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2021-05-10 (月) 14:53:02 (75d)