数学II・Bチェック&リピート
放物線と2本の接線3,4次関数のグラフと面積 → §1 いろいろな数列:等差数列


問題文をクリックすると解答をみることができます.


この項目はありません.

新刊で扱う予定です.


類題演習

問題文をクリックしてみて下さい.
手が止まることはないでしょう.

問題文をクリックしてみて下さい.
(3)が面白いですね.
(1)で点(-3,0)を通る接線と曲線y=f(x)の位置関係をおさえ,(3)につなげています.
よく練られた問題だと思います.

問題文をクリックしてみて下さい.
微積の混合問題になっています.(1)は必要条件で終わらせないように注意しましょう.

問題文をクリックしてみて下さい.
手は止まることなく最後まで進むことでしょう.

問題文をクリックしてみて下さい.
(2)では恒等式の扱いが問われています.

問題文をクリックしてみて下さい.
3次関数のグラフについて極値,接線および面積を絡めて数学IIの微分積分の基本事項が
問われています.

問題文をクリックしてみて下さい.
微分と積分のうまく融合された問題ですね.
(1)の結果が使えるように(3)での計算を工夫しましょう.

問題文をクリックしてみて下さい.
正確な計算力が問われています.

問題文をクリックしてみて下さい.
グラフの上下を確認して積分します.

問題文をクリックしてみて下さい.
2つのグラフの位置関係を捉えましょう.

問題文をクリックしてみて下さい.
3次関数の微分と積分の融合問題です.

問題文をクリックしてみて下さい.
(1)は(4)の準備です.
(2)(3)は一つの設問にして,3交点をもつ条件および3交点のx座標の大小関係を問い,
(4)につなぐと設問の流れが分かりやすい.

問題文をクリックしてみて下さい.
(1)は(4)の準備です.
(2)(3)は一つの設問にして,3交点をもつ条件および3交点のx座標の大小関係を問い,
(4)につなぐと設問の流れが分かりやすい.

問題文をクリックしてみて下さい.
3次関数のグラフと接線で囲まれた部分の面積計算です.

問題文をクリックしてみて下さい.
コツコツ計算しましょう.

問題文をクリックしてみて下さい.
絶対値のついた3次関数のグラフ,面積,最大・最小をテーマに微分積分の基本を問うています.

問題文をクリックしてみて下さい.
素直に計算していけばよいでしょう.

問題文をクリックしてみて下さい.
少々値は大きくなりますが,ひたすら計算するだけです.

問題文をクリックしてみて下さい.
3次関数の極値と2つの3次関数のグラフで囲まれた部分の面積についての計算力が問われています.

問題文をクリックしてみて下さい.
グラフを描きながら考えましょう.

問題文をクリックしてみて下さい.
3次関数のグラフと面積に関しての頻出問題です.

問題文をクリックしてみて下さい.
(3)では3次関数のグラフと接線で囲まれた図形を図示しながら
(グラフの位置関係を明示しながら)面積を求めましょう.

問題文をクリックしてみて下さい.
重解条件と面積を絡めた問題です.
放物線の登場が+αなのでしょうが,このハードルは低い.

問題文をクリックしてみて下さい.
3次関数のグラフと直線で囲まれた部分の面積の和の最小値を問うています.

問題文をクリックしてみて下さい.
3次関数を用いた微積混合の基本問題です.

問題文をクリックしてみて下さい.
(3)での面積計算は大丈夫でしょうか.

問題文をクリックしてみて下さい.
3次関数のグラフと2次関数のグラフで囲まれた部分の面積を求める標準問題です.

問題文をクリックしてみて下さい.
(1)f'(α)=0 はf(x)がx=αで極値をとる必要条件です(十分とは限らない).
(2)3次関数のグラフと2次関数のグラフで囲まれた図形の面積を求める典型問題です.

問題文をクリックしてみて下さい.
3次関数のグラフと接線で囲まれた図形の面積についての基本問題です.

問題文をクリックしてみて下さい.
誘導にのりながら与えられた図形を明確にしていきましょう.

問題文をクリックしてみて下さい.
4次関数のグラフと接線で囲まれた部分の面積を求めています.(2)では二重接線にも配慮しましょう.

問題文をクリックしてみて下さい.
Pを通るCの接線は3本ありますが,傾きが負であることにより1本に絞られます.

問題文をクリックしてみて下さい.
最後の面積はどのように計算しますか?

問題文をクリックしてみて下さい.
4次関数のグラフと二重接線とで囲まれた図形の面積が問われています.


トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2024-03-26 (火) 11:20:36 (60d)