数学IIIチェック&リピート
区分求積の応用
← 定積分と不等式 →
§2 積分法の応用:面積
問題文をクリックすると解答をみることができます.
定積分と不等式 †

類題演習 †

(1),(2)の誘導が(3)で効いてきます.

(2)では(1)を利用してはさみうちの原理を用いましょう.

誘導にのりながら進んでいきましょう.

最後までたどり着くのは辛いかもしれません.(2)を乗り越えられるか?

最後までたどり着くのは辛いかもしれません.(2),(4)を乗り越えられるか?

曲線で囲まれた図形の面積と接線で囲まれた図形の面積の大小比較により不等式をつくりましょう.

微分の不等式への応用,定積分と不等式について問われています.

微分の不等式への応用,定積分と不等式について問われています.

(1)はe^aの展開式であり,積分で表された剰余項が付いています.
(3)では自然対数の底eを評価しています.

1260=2×630です.(1)(2)と(3)のつながりを考えましょう.

自然対数の底 e を積分で定義しています.e の定義はいろいろです.

(4)は2つの図形の面積を比較して不等式をつくります.

(2)は(1)を利用します.