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定義域を 0 ≦ x ≦ 1 とする関数 fn(x) と f(x) を以下で定める．

f1(x) = 0, fn+1(x) =

∫ x

0

(fn(t)− 1)2 dt (n = 1, 2, 3, · · ·)

f(x) = x
x+ 1

(1) 正の整数 n に対して，不等式

0 ≦ fn(x) ≦ 1 (0 ≦ x ≦ 1)

が成り立つことを証明せよ．

(2) 正の整数 n に対して，不等式

(−1)nfn(x) ≧ (−1)nf(x) (0 ≦ x ≦ 1)

が成り立つことを証明せよ．

(3) 実数 a (0 ≦ a ≦ 1) に対して，極限 lim
n→∞

fn(a) を求めよ．
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【答】

(1) 略
(2) 略

(3) lim
n→∞

fn(a) =
a

a+ 1

【解答】

f1(x) = 0, fn+1(x) =

∫ x

0

(fn(t)− 1)2 dt (n = 1, 2, 3, · · ·)

f(x) = x
x+ 1

(1) 正の整数 n に対して，不等式

0 ≦ fn(x) ≦ 1 (0 ≦ x ≦ 1) …… (∗)
が成り立つことを数学的帰納法で示す．

( i ) n = 1のとき
f1(x) = 0であるから，n = 1のとき (∗)は成り立つ．

(ii) n = k での成立を仮定する．0 ≦ x ≦ 1において

0 ≦ fk(x) ≦ 1 (∵ 帰納法の仮定)

であり

− 1 ≦ fk(x)− 1 ≦ 0

∴ 0 ≦ (fk(x)− 1)2 ≦ 1

である．0 ≦ x ≦ xで積分すると

0 ≦
∫ x

0

(fk(t)− 1)2 dt ≦
∫ x

0

dt

∴ 0 ≦ fk+1(x) ≦ x (≦ 1)

n = k + 1のときも (∗∗)は成り立つ．

( i )，(ii)より，すべての正の整数 nに対して (∗)が成り立つことが示された．
…… (証明終わり)
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(2) gn(x) = (−1)n{fn(x)− f(x)} (0 ≦ x ≦ 1)とおき，正の整数 n に対して，不等式

gn(x) ≧ 0 (0 ≦ x ≦ 1) …… (∗∗)
が成り立つことを数学的帰納法で示す．

( i ) n = 1のとき

g1(x) = −{f1(x)− f(x)} = −
(
0− x

x+ 1

)
= x

x+ 1
≧ 0

であり，n = 1のとき (∗∗)は成り立つ．
(ii) n = k での成立を仮定する．

gk+1(x) = (−1)k+1{fk+1(x)− f(x)}

= (−1)k+1

{∫ x

0

(fk(t)− 1)2 dt− x
x+ 1

}
微分すると

gk+1
′(x) = (−1)k+1

{
(fk(x)− 1)2 − 1

(x+ 1)2

}
= (−1)k+1

(
fk(x)− 1 + 1

x+ 1

)(
fk(x)− 1− 1

x+ 1

)
= (−1)k+1

(
fk(x)− x

x+ 1

)(
fk(x)− 1− 1

x+ 1

)
= (−1)k (fk(x)− f(x))

(
1 + 1

x+ 1
− fk(x)

)
= gk(x)

(
1 + 1

x+ 1
− fk(x)

)
…… 1⃝

帰納法の仮定より gk(x) ≧ 0である．また，(1)より 0 ≦ x ≦ 1のとき 1− fk(x) ≧ 0で

あるから，0 ≦ x ≦ 1においては 1 + 1
x+ 1

− fk(x) ≧ 0である．したがって，

gk+1
′(x) ≧ 0 (0 ≦ x ≦ 1)

であり，0 ≦ x ≦ 1において gk+1(x)は増加関数である．

gk+1(x) ≧ gk+1(0) = (−1)k+1

{∫ 0

0

(fk(t)− 1)2 dt− 0

}
= (−1)k+1(0−0) = 0

となり，n = k + 1のときも (∗∗)は成り立つ．

( i )，(ii)より，すべての正の整数 nに対して (∗∗)が成り立つことが示された．すなわち，
すべての正の整数 nに対して

(−1)nfn(x) ≧ (−1)nf(x) (0 ≦ x ≦ 1)

が成り立つ． …… (証明終わり)

(3) 1⃝より

gn+1 =

∫ x

0

gk(t)
(
1 + 1

t+ 1
− fk(t)

)
dt (0 ≦ x ≦ 1)

である．0 ≦ t ≦ x ≦ 1であり，1 + 1
t+ 1

− fk(t) ≦ 1 + 1
0 + 1

− 0 ≦ 2であるから

gn+1 ≦ 2

∫ x

0

gk(t) dt (0 ≦ x ≦ 1) …… 2⃝

が成り立つ．

g1(x) =
x

x+ 1
≦ x …… 3⃝
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であり

g2(x) ≦ 2

∫ x

0

g1(t) dt ≦ 2

∫ x

0

t dt = 2
[
t2

2

]x
0
= x2

g3(x) ≦ 2

∫ x

0

g2(t) dt ≦ 2

∫ x

0

t2 dt = 2
[
t3

3

]x
0
= 2

3
x3

g4(x) ≦ 2

∫ x

0

g3(t) dt ≦ 2

∫ x

0

2
3
t3 dt = 2 · 2

3

[
t4

4

]x
0
= 2 · 2

3 · 4 x4

g5(x) ≦ 2

∫ x

0

g4(t) dt ≦ 2

∫ x

0

2 · 2
3 · 4 t4 dt = 2 · 2 · 2

3 · 4

[
t5

5

]x
0
= 2 · 2 · 2

3 · 4 · 5 x5

であるから

gn(x) ≦

n−2 個︷ ︸︸ ︷
2 · 2 · · · 2
3 · 4 · · · n

xn = 2
2

·

n−2 個︷ ︸︸ ︷
2 · 2 · · · 2
3 · 4 · · · n

xn = 2n−1

n!
xn

と推定される．
正の整数 n に対して，不等式

gn(x) ≦ 2n−1

n!
xn (0 ≦ x ≦ 1) …… (∗ ∗ ∗)

が成り立つことを数学的帰納法で示す．

( i ) n = 1のとき
3⃝より，n = 1のとき (∗ ∗ ∗)は成り立つ．

(ii) n = k での成立を仮定する．0 ≦ x ≦ 1において

gk+1(x) ≦ 2

∫ x

0

gk(t) dt ≦ 2

∫ x

0

2k−1

k!
tk dt (∵ 帰納法の仮定)

= 2 · 2k−1

k!

[
tk+1

k + 1

]x
0
= 2 · 2k−1

k!
xk+1

k + 1

= 2k

(k + 1)!
xk+1

( i )，(ii)より，すべての正の整数 nに対して (∗ ∗ ∗)が成り立つことが示された．
(∗∗)とあわせると

0 ≦ gn(x) ≦ 2n−1

n!
xn (0 ≦ x ≦ 1)

が成り立つ．x = aとおくと

0 ≦ gn(a) ≦ 2n−1

n!
an =

n−1 個︷ ︸︸ ︷
2
2

· 2
3

· · · 2
n

an ≦ 1 ·

n−2 個︷ ︸︸ ︷
2
3

· · · 2
3
an =

(
2
3

)n−2

an

が成り立つ．0 ≦ a ≦ 1に対して

lim
n#»∞

(
2
3

)n−2

an = 0

であるから，はさみうちの原理により

lim
n#»∞

gn(a) = 0

∴ lim
n#»∞

(−1)n{fn(a)− f(a)} = 0

∴ lim
n#»∞

fn(a) = f(a) = a
a + 1

……（答）

である．


