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多項式 fn(x)，gn(x) (n = 1, 2, 3, · · ·) を条件
f1(x) = x, g1(x) = 1,

fn+1(x) = fn(x) + xgn(x), gn+1(x) = gn(x)− xfn(x)

で定める．

(1) 正の整数 n に対して，等式

{fn+1(x)}′ = (n+ 1)gn(x), {gn+1(x)}′ = −(n+ 1)fn(x)

が成り立つことを示し，多項式 fn(x) の次数を求めよ．

(2) 正の整数 n に対して，区間 − π
2

< θ < π
2
において等式

sinnθ = fn(tan θ) cos
n θ, cosnθ = gn(tan θ) cos

n θ

が成り立つことを示せ．

(3) 正の整数 n と実数 a に対して，方程式 fn(x) = agn(x) の異なる実数解の個数を

求めよ．

(21 千葉大 9)

【答】

(1) 証明は略．(fn(x)の次数) =

{
n (nが奇数のとき)

n− 1 (nが偶数のとき)

(2) 略

(3) (実数解の個数) =

{
n− 1 (a = 0かつ nが偶数のとき)

n (上記以外のとき)

【解答】
f1(x) = x, g1(x) = 1,

fn+1(x) = fn(x) + xgn(x), gn+1(x) = gn(x)− xfn(x) (n ≧ 1)

(1) 正の整数 n に対して，等式

{fn+1(x)}′ = (n+ 1)gn(x), {gn+1(x)}′ = −(n+ 1)fn(x) …… (∗)

が成り立つことを数学的帰納法を用いて示す．

( i ) n = 1のとき

f2(x) = f1(x) + xg1(x) = x+ x · 1 = 2x,

g2(x) = g1(x)− xf1(x) = 1− x · x = −x2 + 1

であるから

f2
′(x) = 2 = 2 · 1 = 2g1(x),

g2
′(x) = −2x = −2 · x = −2f1(x)

となり，n = 1のとき (∗)は成り立つ．
(ii) n = k での成立を仮定すると

{fk+2(x)}′

= {fk+1(x) + xgk+1(x)}′

= (k + 1)gk(x) + 1 · gk+1(x) + x · {−(k + 1)fk(x)} (∵ 帰納法の仮定)

= (k + 1){gk(x)− xfk(x)}+ gk+1(x)

= (k + 1)gk+1(x) + gk+1(x)

= (k + 2)gk+1(x),
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{gk+2(x)}′

= {gk+1(x)− xfk+1(x)}′

= −(k + 1)fk(x)− 1 · fk+1(x)− x · (k + 1)gk(x) (∵ 帰納法の仮定)

= −(k + 1){fk(x) + xgk(x)} − fk+1(x)

= −(k + 1)fk+1(x)− fk+1(x)

= −(k + 2)fk+1(x)

であり，n = k + 1のときも (∗)は成り立つ．

( i )，(ii)より，すべての正の整数 nに対して (∗)は成り立つ． …… (証明終わり)

次に，多項式 fn(x), gn(x)の次数をそれぞれ an, bn とおくと

a1 = 1, b1 = 0

であり，(∗)より{
an+1 = bn + 1

bn+1 = an + 1
(n ≧ 1) …… (∗∗)

が成り立つ．

an+2 = bn+1 + 1 = (an + 1) + 1 = an + 2

であり，a1 = 1, a2 = b1 + 1 = 0 + 1 = 1であるから，nの偶奇で場合分けすると

n = 2l − 1のとき a2l−1 = a1 + 2(l − 1) = 2l − 1 = 2 · n+ 1
2

− 1 = n

n = 2lのとき a2l = a2 + 2(l − 1) = 2l − 1 = 2 · n
2

− 1 = n− 1

となる．よって

an =

{
n (nが奇数のとき)

n − 1 (nが偶数のとき)
……（答）

である．

• an, bn の連立漸化式 (∗∗)は

(∗∗) ⇐⇒
{
an+1 + bn+1 = an + bn + 2

an+1 − bn+1 = −(an − bn)

であるから{
an + bn = (a1 + b1) + 2(n− 1) = (1 + 0) + 2(n− 1) = 2n− 1

an − bn = (a1 − b1)(−1)n−1 = (1− 0)(−1)n−1 = (−1)n−1

∴ an =
2n− 1 + (−1)n−1

2

である．

(2) 正の整数 n に対して，区間 − π
2

< θ < π
2
において等式

sinnθ = fn(tan θ) cos
n θ, cosnθ = gn(tan θ) cos

n θ …… (∗∗∗)
が成り立つことを数学的帰納法を用いて示す．

( i ) n = 1のとき

f1(tan θ) cos θ = tan θ · cos θ = sin θ,

g1(tan θ) cos θ = 1 · cos θ = cos θ

であり，n = 1のとき (∗∗∗)は成り立つ．



3

(ii) n = k での成立を仮定すると

fk+1(tan θ) cos
k+1 θ = {fk(tan θ) + tan θ · gk(tan θ)} cosk+1 θ

= fk(tan θ) cos
k+1 θ + tan θ · gk(tan θ) cosk+1 θ

= sin kθ cos θ + tan θ cos kθ cos θ (∵ 帰納法の仮定)

= sin kθ cos θ + cos kθ sin θ

= sin(kθ + θ)

= sin(k + 1)θ

gk+1(tan θ) cos
k+1 θ = {gk(tan θ)− tan θ · fk(tan θ)} cosk+1 θ

= gk(tan θ) cos
k+1 θ − tan θ · fk(tan θ) cosk+1 θ

= cos kθ cos θ − tan θ sin kθ cos θ (∵ 帰納法の仮定)

= cos kθ cos θ − sin kθ sin θ

= cos(kθ + θ)

= cos(k + 1)θ

であり，n = k + 1のときも (∗∗∗)は成り立つ．

( i )，(ii)より，すべての正の整数 nに対して (∗∗∗)は成り立つ． …… (証明終わり)

(3) x = tan θ
(
− π

2
< θ < π

2

)
とおくと，xと θ は 1対 1に対応するから

fn(x) = agn(x) の異なる実数解 x の個数

は

fn(tan θ) = agn(tan θ) …… (⋆) を満たす θ
(
− π

2
< θ < π

2

)
の個数

と一致する．− π
2

< θ < π
2
のとき cos θ \= 0であるから，cosn θ \= 0であり，(∗ ∗ ∗)より

(⋆) ⇐⇒ fn(tan θ) cos
n θ = agn(tan θ) cos

n θ

⇐⇒ sinnθ = a cosnθ

cosnθ = 0とすると sinnθ \= 0であり，この等式は成り立たないから，cosnθ \= 0である．
したがって (⋆)は

tannθ = a

と変形される．y = tannθ は基本周期 π
n
の関数であり，そのグラフは下図となる．

−π
2

π
2

nが奇数 (n = 5)のとき

y = a

θ

y

O θ

y

O−π
2

π
2

nが偶数 (n = 6)のとき

y = a

(⋆)を満たす θ の個数は，y = tannθ
(
− π

2
< θ < π

2

)
と y = aの共有点の個数であり
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a \= 0のとき， n個
a = 0のとき， nが奇数のとき n個，nが偶数のとき n− 1個

である．よって，求める実数解 xの個数は{
n − 1 (a = 0かつ nが偶数のとき)

n (上記以外のとき)
……（答）

である．


