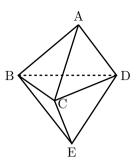
図のような六面体 ABCDE の辺上を動く点 P がある. P は,頂点 A を出発点とし,1 回の移動で,そのときにいる頂点から 1 辺で結ばれた隣の頂点のいずれか 1 つに等確率で移動する.ただし,同じ頂点に留まることはないとする. $n=1,\ 2,\ 3,\ \cdots$ に対して,P が n 回目の移動後に A,B,C,D,E にいる確率を,それぞれ $a_n,\ b_n,\ c_n,\ d_n,\ e_n$ とする.例えば,A から 1 辺で結ばれた隣の頂点とは,B,C,D であり,1 回目の移動で P はこのいずれか 1 つに等確率で移動する.従って, $a_1=e_1=0,\ b_1=c_1=d_1=\frac{1}{2}$ である.



- (1) a_2 , b_2 , c_2 , d_2 , e_2 を求めよ.
- (2) a_{n+1} , b_{n+1} , c_{n+1} , d_{n+1} , e_{n+1} を, a_n , b_n , c_n , d_n , e_n を用いて表せ.
- (3) 数学的帰納法を用いて、 $b_n=c_n=d_n\;(n=1,\;2,\;3,\;\cdots)$ が成り立つことを証明せよ.
- (4) $q_n = b_{n+1} b_n$ とおくとき. q_n を n を用いて表せ.
- (5) $n=2, 3, 4, \cdots$ に対して, a_n, b_n を n を用いて表せ.

(22 東京海洋大 海洋工 3)

【答】

(1)
$$a_2 = \frac{1}{4}$$
, $b_2 = \frac{1}{6}$, $c_2 = \frac{1}{6}$, $d_2 = \frac{1}{6}$, $e_2 = \frac{1}{4}$

$$(2) \ a_{n+1} = \frac{1}{4}b_n + \frac{1}{4}c_n + \frac{1}{4}d_n,$$

$$b_{n+1} = \frac{1}{3}a_n + \frac{1}{4}c_n + \frac{1}{4}d_n + \frac{1}{3}e_n,$$

$$c_{n+1} = \frac{1}{3}a_n + \frac{1}{4}b_n + \frac{1}{4}d_n + \frac{1}{3}e_n,$$

$$d_{n+1} = \frac{1}{3}a_n + \frac{1}{4}b_n + \frac{1}{4}c_n + \frac{1}{3}e_n,$$

$$e_{n+1} = \frac{1}{4}b_n + \frac{1}{4}c_n + \frac{1}{4}d_n$$

(3) 略

(4)
$$q_n = -\frac{1}{6} \left(-\frac{1}{2} \right)^{n-1}$$

(5)
$$a_n = \frac{1}{6} + \frac{1}{3} \left(-\frac{1}{2} \right)^n$$
, $b_n = \frac{2}{9} + \frac{1}{9} \left(-\frac{1}{2} \right)^{n-1}$

【解答】

(1) 2回目の移動後に点 P が点 A にいるのは、1回目の移動後に点 B, 点 C, 点 D のいずれかにいて、2回目の移動で点 A に移動する場合だから

$$a_2 = b_1 \cdot \frac{1}{4} + c_1 \cdot \frac{1}{4} + d_1 \cdot \frac{1}{4} = 3 \times \frac{1}{3} \cdot \frac{1}{4} = \frac{1}{4}$$
(答)

である. 同様にして

$$b_2 = c_1 \cdot \frac{1}{4} + d_1 \cdot \frac{1}{4} = \frac{1}{6}$$
(答)

$$c_2 = b_1 \cdot \frac{1}{4} + d_1 \cdot \frac{1}{4} = \frac{1}{6}$$
(答)

$$d_2 = b_1 \cdot \frac{1}{4} + c_1 \cdot \frac{1}{4} = \frac{1}{6}$$
(答)

$$e_2 = b_1 \cdot \frac{1}{4} + c_1 \cdot \frac{1}{4} + d_1 \cdot \frac{1}{4} = \frac{1}{4}$$
(答)

である.

(2) (1) と同様に考えて

$$a_{n+1} = \frac{1}{4}b_n + \frac{1}{4}c_n + \frac{1}{4}d_n \qquad \cdots ($$
 (答)
$$b_{n+1} = \frac{1}{3}a_n + \frac{1}{4}c_n + \frac{1}{4}d_n + \frac{1}{3}e_n \qquad \cdots ($$
 ②
$$c_{n+1} = \frac{1}{3}a_n + \frac{1}{4}b_n + \frac{1}{4}d_n + \frac{1}{3}e_n \qquad \cdots ($$
 ③
$$d_{n+1} = \frac{1}{3}a_n + \frac{1}{4}b_n + \frac{1}{4}c_n + \frac{1}{3}e_n \qquad \cdots ($$
 ④
$$e_{n+1} = \frac{1}{4}b_n + \frac{1}{4}c_n + \frac{1}{4}d_n \qquad \cdots ($$
 ⑤
$$\cdots ($$
 答)

である.

- (3) すべての自然数 n に対して「 $b_n=c_n=d_n$ 」…… (*) が成り立つことを数学的帰納法で示す.
 - (i) $b_1=c_1=d_1=\frac{1}{3}$ より, n=1 のとき (*) は成り立つ.
 - (ii) n = k での成立を仮定する. このとき

$$b_{k+1} = \frac{1}{3}a_k + \frac{1}{4}c_k + \frac{1}{4}d_k + \frac{1}{3}e_k = \frac{1}{3}a_k + \frac{2}{4}b_k + \frac{1}{3}e_k$$

$$c_{k+1} = \frac{1}{3}a_k + \frac{1}{4}b_k + \frac{1}{4}d_k + \frac{1}{3}e_k = \frac{1}{3}a_k + \frac{2}{4}b_k + \frac{1}{3}e_k$$

$$d_{k+1} = \frac{1}{3}a_k + \frac{1}{4}b_k + \frac{1}{4}c_k + \frac{1}{3}e_k = \frac{1}{3}a_k + \frac{2}{4}b_k + \frac{1}{3}e_k$$

であり、n = k + 1 のときも (*) は成り立つ.

- (i), (ii) より, すべての自然数n に対して(*) は成り立つ.
- (4) (3) より、①~⑤は

$$\begin{cases} a_{n+1} = \frac{3}{4}b_n & \cdots & \\ b_{n+1} = \frac{1}{3}a_n + \frac{1}{2}b_n + \frac{1}{3}e_n & \cdots & \\ e_{n+1} = \frac{3}{4}b_n & \cdots & & \\ \end{cases}$$

と整理される. ⑦より

$$b_{n+2} = \frac{1}{3}a_{n+1} + \frac{1}{2}b_{n+1} + \frac{1}{3}e_{n+1}$$

$$= \frac{1}{3} \cdot \frac{3}{4}b_n + \frac{1}{2}b_{n+1} + \frac{1}{3} \cdot \frac{3}{4}b_n \quad (\because \textcircled{6}, \textcircled{8})$$

$$= \frac{1}{2}b_{n+1} + \frac{1}{2}b_n$$

が得られる. したがって

$$b_{n+2} - b_{n+1} = -\frac{1}{2}(b_{n+1} - b_n)$$

成り立つ. $q_n = b_{n+1} - b_n$ とおくと

$$q_{n+1} = -\frac{1}{2}q_n \quad (n \ge 1)$$

となる. 数列 $\{q_n\}$ は初項 $q_1=b_2-b_1=rac{1}{6}-rac{1}{3}=-rac{1}{6}$,公比 $-rac{1}{2}$ の等比数列であるから

$$q_n = -\frac{1}{6} \left(-\frac{1}{2} \right)^{n-1} \qquad \cdots (2)$$

である.

(5) (4) の結果より, $n \ge 2$ のとき

$$b_n = b_1 + \sum_{k=1}^{n-1} q_k$$

$$= \frac{1}{3} - \frac{1}{6} \sum_{k=1}^{n-1} \left(-\frac{1}{2}\right)^{k-1}$$

$$= \frac{1}{3} - \frac{1}{6} \cdot \frac{1 - \left(-\frac{1}{2}\right)^{n-1}}{1 - \left(-\frac{1}{2}\right)}$$

$$= \frac{2}{9} + \frac{1}{9} \left(-\frac{1}{2}\right)^{n-1}$$

これは n=1 のときも成立する. よって

$$b_n = \frac{2}{9} + \frac{1}{9} \left(-\frac{1}{2} \right)^{n-1} \quad (n \ge 1)$$
(答)

⑥より、 $n \ge 2$ のとき

$$a_n = \frac{3}{4}b_{n-1}$$

$$= \frac{3}{4}\left\{\frac{2}{9} + \frac{1}{9}\left(-\frac{1}{2}\right)^{n-2}\right\}$$

$$= \frac{1}{6} + \frac{1}{3}\left(-\frac{1}{2}\right)^n \quad (n \ge 2)$$
.....(\(\frac{\pi}{2}\))

である.

● (4) で数列 {b_n} の 3 項間漸化式として

$$b_{n+2} - \frac{1}{2}b_{n+1} + \frac{1}{2}b_n = 0, \quad b_1 = \frac{1}{3}, \ b_2 = \frac{1}{6}$$

が得た. これを解くヒントとして $q_n = b_{n+1} - b_n$ が与えられているが、このヒントなしでも一般項を求められるようにしておこう.

 $b_{n+2}-\alpha b_{n+1}=\beta(b_{n+1}-\alpha b_n)$ となる定数 $\alpha,\ \beta$ を求めたい。展開して与えられた漸化式と係数を比較すると

$$\begin{cases} \alpha + \beta = \frac{1}{2} \\ \alpha \beta = \frac{1}{2} \end{cases}$$

であり, α , β は

$$t^2 - \frac{1}{2}t + \frac{1}{2} = 0$$
 Off $t = -\frac{1}{2}$, 1

である. したがって, この漸化式は

$$b_{n+1}+rac{1}{2}b_{n+1}=b_{n+1}+rac{1}{2}b_n$$

$$b_{n+1}-b_{n+1}=-rac{1}{2}(b_{n+1}-b_n)\quad (これが (4) のヒント)$$

の2通りに変形される。それぞれから

$$b_{n+1} + \frac{1}{2}b_n = b_2 + \frac{1}{2}b_1 = \frac{1}{6} + \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{3}$$

$$b_{n+1} - b_n = \left(\frac{1}{6} - \frac{1}{3}\right)\left(-\frac{1}{2}\right)^{n-1} = -\frac{1}{6}\left(-\frac{1}{2}\right)^{n-1} = \frac{1}{3}\left(-\frac{1}{2}\right)^n$$

を得る. 辺々ひくと

$$\frac{3}{2}b_n = \frac{1}{3} - \frac{1}{3}\left(-\frac{1}{2}\right)^n$$

$$\therefore b_n = \frac{2}{9} + \frac{1}{9}\left(-\frac{1}{2}\right)^{n-1}$$

である.