曲線 $y=1+\sin^2 x$ と x 軸,y 軸,および直線 $x=\pi$ で囲まれた図形の面積は $\boxed{\mathcal{T}}_{1}$ なる。

(22 明治大 理工・総合数理・政治経済 1(1))

【解答】

$$1+\sin^2 x>0$$
 であるから、求める面積は
$$\int_0^\pi (1+\sin^2 x) \, dx$$

$$= \int_0^\pi \left(1+\frac{1-\cos 2x}{2}\right) \, dx$$

$$= \left[\frac{3}{2}x-\frac{\sin 2x}{4}\right]_0^\pi$$

$$= \frac{3}{2}\pi \qquad \qquad \cdots (答)$$
 O $\frac{\pi}{2}$ π x

である.

• $1 + \sin^2 x > 0$ を確認したら、解答のように面積は計算できる (図示不要). 求めた面積 は上図の斜線部分の面積である.