a, bを実数とする。 θ についての方程式

$$\cos 2\theta = a\sin\theta + b$$

が実数解をもつような点 (a, b) の存在範囲を座標平面上に図示せよ.

(23 大阪大 文系 1)

【答】略

【解答】

$$\cos 2\theta = a \sin \theta + b$$
 1

① を変形すると

$$1 - 2\sin^2\theta = a\sin\theta + b$$

$$2\sin^2\theta + a\sin\theta + b - 1 = 0$$

となる. $t = \sin \theta$ とおくと

$$2t^2 + at + b - 1 = 0$$
 ②

となる.

 θ についての方程式 ① が実数解をもつ条件は,t についての方程式 ② が $-1 \le t \le 1$ の範囲に少なくとも 1 つの実数解をもつことである.

$$f(t) = 2t^{2} + at + b - 1$$
$$= 2\left(t + \frac{a}{4}\right)^{2} - \frac{a^{2}}{8} + b - 1$$

であり、求める条件は

(i)
$$f(-1)f(1) \leq 0$$
 または (ii)
$$\begin{cases} f(-1) \geq 0 & \text{かつ } f(1) \geq 0 \\ -1 \leq -\frac{a}{4} \leq 1 \\ f\left(-\frac{a}{4}\right) = -\frac{a^2}{8} + b - 1 \leq 0 \end{cases}$$

が成り立つことである.

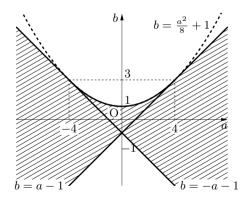
(i)
$$\iff$$
 $(-a+b+1)(a+b+1) \le 0$

2 直線 -a+b+1=0, a+b+1=0 は点 (0, -1) で交わる.

(ii)
$$\iff$$

$$\begin{cases}
-a+b+1 \ge 0 \\
a+b+1 \ge 0 \\
-4 \le a \le 4 \\
b \le \frac{a^2}{8} + 1
\end{cases}$$

(i) または (ii) を図示すると, 右図の斜線部分となる. 境界も含む.



② を ab 平面上の直線

$$b = -ta - 2t^2 + 1$$

とみて、t が $-1 \le t \le 1$ の範囲で動くときの直線の通過範囲を求めてもよい.

(別解 1) a を固定するとき

$$b = -2t^{2} - at + 1$$
$$= -2\left(t + \frac{a}{4}\right)^{2} + \frac{a^{2}}{8} + 1$$

 $g(t) = -2t^2 - at + 1$ とおくと,b のとりうる値の範囲は

$$(?) - \frac{a}{4} \leqq -1 \ (すなわち \ a \geqq 4)$$
 のとき

$$g(-1) \ge b \ge g(1)$$

$$\therefore a-1 \ge b \ge -a-1$$

(イ)
$$-1 \le -\frac{a}{4} \le 1$$
 (すなわち $4 \ge a \ge -4$) のとき

$$\min\{g(-1), \ g(1)\} \le b \le g\left(-\frac{a}{4}\right)$$

$$\therefore \min\{a-1, -a-1\} \le b \le \frac{a^2}{8} + 1$$

(ウ)
$$1 \le -\frac{a}{4}$$
 (すなわち $-4 \ge a$) のとき

$$g(-1) \le b \le g(1)$$

$$\therefore a-1 \le b \le -a-1$$

(ア) または(イ) または(ウ)を図示すると解答の図を得る.

(別解 2) ab 平面上の放物線 $b = \frac{a^2}{8} + 1$ と

直線 $b = -at - 2t^2 + 1$ を連立すると

$$-2\left(t + \frac{a}{4}\right)^2 + \frac{a^2}{8} + 1 = \frac{a^2}{8} + 1$$

$$\therefore -2\left(t+\frac{a}{4}\right)^2=0$$

すなわち, 直線 $b=-at-2t^2+1$ は放物線 $b=\frac{a^2}{8}+1$ 上の点 $(-4t,\ 2t^2+1)$ における接線である.

t を $-1 \le t \le 1$ の範囲で動かしながら、接線を引き続けると右図となり、解答の図を得る、

