関数 $f(x)=\frac{x+2}{ax^2+1}$ は x=1 で極値をとる.定数 a の値および f(x) の最大値と最小値を求めよ.

(23 岩手大 後 理工 1(1))

【答】
$$a = \frac{1}{5}$$
,最大值 $\frac{5}{2}$,最小值 $-\frac{1}{2}$

【解答】

$$f(x) = \frac{x+2}{ax^2+1}$$

f(x) は x=1 で極値をとるから,f'(x) は x=1 で符号を変える.

$$f'(x) = \frac{1 \cdot (ax^2 + 1) - (x + 2) \cdot 2ax}{(ax^2 + 1)^2} = \frac{-ax^2 - 4ax + 1}{(ax^2 + 1)^2}$$

f'(1) = 0 が必要であり

$$-a - 4a + 1 = 0 \qquad \therefore \quad a = \frac{1}{5}$$

である. このとき

$$f(x) = \frac{5(x+2)}{x^2+5},$$

$$f'(x) = \frac{5\{1 \cdot (x^2+5) - (x+2) \cdot 2x\}}{(x^2+5)^2} = \frac{-5(x^2+4x-5)}{(x^2+5)^2} = \frac{-5(x+5)(x-1)}{(x^2+5)^2}$$

f(x) の増減は下表となる.

x		-5		1	
f'(x)	_	0	+	0	_
f(x)	`		1		`

x=1で極値となるから、十分. よって

$$a = \frac{1}{5}$$
 ······(答)

である. また

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{5\left(1 + \frac{2}{x}\right)}{x + \frac{5}{x}} = 0$$

であるから, f(x) は

最大値:
$$f(1) = \frac{5 \cdot 3}{6} = \frac{5}{2}$$
,(答)

最小値:
$$f(-5) = \frac{5 \cdot (-3)}{30} = -\frac{1}{2}$$
(答)

をとる.