1 から 10 までの整数が 1 つずつ重複せずに書かれた 10 枚のカードがある. この中から同時に 4 枚のカートを取り出すとき、取り出したカードに書かれている数の和が 20 以下となる確率を求めよ.

(23 山梨大 後 医 3)

【答】 $\frac{8}{21}$

【解答】

1 から 10 までの整数が書かれた 10 枚のカードの中から同時に 4 枚のカードを取り出すとき、取り出し方の総数は

$$_{10}C_4 = \frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1} = 210$$
 (通り)

である.

取り出された 4 枚のカードに書かれた数を a, b, c, d とし

$$\begin{cases} a+b+c+d \le 20 \\ a < b < c < d \end{cases}$$

を満たすものを数える.

まず、 a のとりうる値の範囲は

$$a+b+c+d$$

 $\geq a+(a+1)+(a+2)+(a+3)$

$$\therefore 20 \ge 4a + 6$$

a は1以上の整数であるから

$$a = 1, 2, 3$$

である. $3 \le c < d \le 10$ を満たす c + d の値は右表となる.

(i) a=1 のとき

bのとりうる値の範囲は

$$a+b+c+d \ge 1+b+(b+1)+(b+2)$$

 $\therefore 20 \ge 3b+4 \qquad \therefore b=2, 3, 4, 5$

である.

(7) (a, b) = (1, 2) のとき

 $3 \le c < d \le 10$ かつ $c+d \le 17$ を満たす組 $(c,\ d)$ は, $c=3,\ 4,\ 5,\ 6,\ 7,\ 8$ のときを数えて

$$7+6+5+4+3+1=26$$
 (通り)

(イ) (a, b) = (1, 3) のとき $4 \le c < d \le 10$ かつ $c + d \le 16$ を満たす組 (c, d) は 6 + 5 + 4 + 2 = 17 (通り)

(ウ)
$$(a, b) = (1, 4)$$
 のとき $5 \le c < d \le 10$ かつ $c + d \le 15$ を満たす組 (c, d) は

$$5+3+1=9$$
 (通り)

(エ) (a, b) = (1, 5) のとき $6 \le c < d \le 10$ かつ $c + d \le 14$ を満たす組 (c, d) は 2 (通り)

$$c+d$$
 の表

c+a OX										
c^{d}	1	2	3	4	5	6	7	8	9	10
1										
2										
3				7	8	9	10	11	12	13
4					9	10	11	12	13	14
5						11	12	13	14	15
6							13	14	15	16
7								15	16	17
8									17	18
9										19
					•					

(ii) a = 2 のとき

bのとりうる値の範囲は

$$a+b+c+d \ge 2+b+(b+1)+(b+2)$$

 $\therefore 20 \ge 3b+5 \qquad \therefore b=3, 4, 5$

である.

(ア) (a, b) = (2, 3) のとき $4 \le c < d \le 10$ かつ $c + d \le 15$ を満たす組 (c, d) は 6 + 5 + 3 + 1 = 15 (通り)

(イ) (a, b) = (2, 4) のとき $5 \le c < d \le 10$ かつ $c + d \le 14$ を満たす組 (c, d) は 4 + 2 = 6 (通り)

(ウ) (a, b) = (2, 5) のとき $6 \le c < d \le 10$ かつ $c + d \le 13$ を満たす組 (c, d) は 1 (通り)

(iii) a=3 のとき

bのとりうる値の範囲は

$$a+b+c+d \ge 3+b+(b+1)+(b+2)$$

 $\therefore 20 \ge 3b+6 \qquad \therefore b=4$

である.

$$(a, b) = (3, 4)$$
 のとき $5 \le c < d \le 10$ かつ $c + d \le 13$ を満たす組 (c, d) は $3 + 1 = 4$ (通り)

以上 (i) \sim (iii) から、 $a+b+c+d \le 20$ を満たす組の総数は (26+17+9+2)+(15+6+1)+4=80 (通り)

であり, 求める確率は

$$\frac{80}{210} = \frac{8}{21}$$
(答)

である.