変量 x, y の値の組

$$(-1, -1), (-1, 1), (1, -1), (1, 1)$$

をデータWとする、データWのxとyの相関係数は0である、データWに、新た に1個の値の組を加えたときの相関係数について調べる。なお、必要に応じて、後に 示す表1の計算表を用いて考えてもよい.

a を実数とする. データ W に (5a, 5a) を加えたデータを W' とする. W' の x の 平均値 \overline{x} は $\boxed{\hspace{1cm} =\hspace{1cm}}$, W'のxはyの共分散 s_{xy} は $\boxed{\hspace{1cm} extbf{ iny Z} \hspace{1cm}}$ となる. ただし, xとyの 共分散とは、xの偏差とyの偏差の積の平均値

W' の x と y の標準偏差を、それぞれ s_x 、 s_y とする、積 $s_x s_y$ は こことなる、ま た相関係数が 0.95 以上となるための必要十分条件は $s_{xy} \ge 0.95 s_x s_y$ である. これよ り、相関係数が 0.95 以上となるような a の値の範囲は \bigcirc である.

表 1 計算表

x	y	$x - \overline{x}$	$y - \overline{y}$	$(x-\overline{y})(x-\overline{y})$
-1	-1			
-1	1			
1	-1			
1	1			
5a	5a			

ニーの解答群

- (0) 0
- $\widehat{1}$ 5a
- (2) 5a + 4
- \bigcirc a
- (4) $a + \frac{4}{5}$

ヌの解答群

- $0 4a^2$
- ① $4a^2 + \frac{4}{5}$ ② $4a^2 + \frac{4}{5}a$ ③ $5a^2$
- $(4) 20a^2$

ネの解答群

 $0 4a^2 + \frac{16}{5}a + \frac{4}{5}$

 $\widehat{1}$ $4a^2 + 1$

② $4a^2 + \frac{4}{5}a$

(3) $2a^2 + \frac{2}{5}$

ノの解答群

 $0 - \frac{\sqrt{95}}{4} \le a \le \frac{\sqrt{95}}{4}$

- (3) $a \le -\frac{\sqrt{95}}{5}, \frac{\sqrt{95}}{5} \le a$
- (4) $-\frac{2\sqrt{19}}{5} \le a \le \frac{2\sqrt{19}}{5}$
- (5) $a \le -\frac{2\sqrt{19}}{5}, \frac{2\sqrt{19}}{5} \le a$

 (答)
 コース ネ ノ

 3 0 2 3

【解答】

W' の x の平均値 \overline{x} は

$$\overline{x} = \frac{-1 - 1 + 1 + 1 + 5a}{5} = a$$
 (3)

である. 同じく W' の x の平均値 \overline{y} は

$$\overline{y} = \frac{-1 + 1 - 1 + 1 + 5a}{5} = a$$

であり、計算表は次のようになる.

x	y	$x - \overline{x}$	$y-\overline{y}$	$(x-\overline{y})(x-\overline{y})$
-1	-1	-1 - a	-1 - a	$(1+a)^2$
-1	1	-1 - a	1-a	a^2-1
1	-1	1-a	-1-a	a^2-1
1	1	1-a	1-a	$(1-a)^2$
5a	5a	4a	4a	$16a^2$

W'のxとyの共分散 s_{xy} は

$$s_{xy} = (x \text{ の偏差と } y \text{ の偏差の積の平均値})$$

$$= \frac{(1+a)^2 + 2(a^2 - 1) + (1-a)^2 + 16a^2}{5}$$

$$= \frac{20a^2}{5}$$

$$= 4a^2 \quad (0)$$
(答)

となる.

W'のxの標準偏差 s_x は

$$s_x^2 = \frac{2(-1-a)^2 + 2(1-a)^2 + (4a)^2}{5} = \frac{20a^2 + 4}{5} = 4a^2 + \frac{4}{5}$$

同じく,W'のyの標準偏差 s_y は

$$s_y^2 = 4a^2 + \frac{4}{5}$$

であり、積 $s_x s_y$ は

$$s_x s_y = \sqrt{4a^2 + \frac{4}{5}} \sqrt{4a^2 + \frac{4}{5}} = 4a^2 + \frac{4}{5}$$
 (2)(答)

となる.

また,相関係数 $\frac{s_{xy}}{s_x s_y}$ が 0.95 以上となるための必要十分条件は

$$\frac{s_{xy}}{s_x s_y} \ge 0.95 \qquad \therefore \quad s_{xy} \ge 0.95 s_x s_y$$

であるから、 a の値の範囲は

$$4a^{2} \ge 0.95 \left(4a^{2} + \frac{4}{5}\right)$$

$$(1 - 0.95)a^{2} \ge 0.95 \times \frac{1}{5}$$

$$5a^{2} \ge 19$$

$$\therefore \quad a \le -\frac{\sqrt{95}}{5}, \quad \frac{\sqrt{95}}{5} \le a \qquad (③)$$
.....(答)

である.