a と b を実数とするとき, $|a+b| \le |a|+|b|$ が成り立つことを証明しなさい. (24 公立千歳科技大 理工 4(1))

【答】 略

【解答】

$$|a+b| \ge 0, \ |a|+|b| \ge 0$$
 であり
$$|a+b| \le |a|+|b| \iff |a+b|^2 \le (|a|+|b|)^2$$
 であるから、 $(|a|+|b|)^2-|a+b|^2 \ge 0$ が成り立つことを示す。
$$(|a|+|b|)^2-|a+b|^2 = (|a|^2+2|a||b|+|b|^2)-(a^2+2ab+b^2) = (a^2+2|ab|+b^2)-(a^2+2ab+b^2) = 2(|ab|-ab) \ge 0$$

であり

$$|a+b| \le |a| + |b|$$

は成り立つ. 等号が成り立つのは

$$|ab| - ab = 0$$
 すなわち $ab \ge 0$ (a, b) が同符号またはともに (a, b)

のときである.