u を実数とするとき、複素数 $z=\frac{1}{1+iu}$ が複素数平面上に作る曲線に原点を付け 加えた図形で囲まれた部分の面積 S を求めなさい. ただし, $i=\sqrt{-1}$ である. 解答 欄には計算過程も書きなさい.

(24 公立千歳科技大 理工 2)

【答】 $\frac{\pi}{4}$

【解答】

$$z = \frac{1}{1+iu} \iff 1+iu = \frac{1}{z}$$

$$\therefore \quad u = \frac{1}{i}\left(\frac{1}{z}-1\right)$$
 u は実数であるから $u-\overline{u}=0$ が成り立つ.

$$\frac{1}{i} \left(\frac{1}{z} - 1 \right) - \frac{1}{-i} \left(\frac{1}{\overline{z}} - 1 \right) = 0$$

$$\iff \frac{1}{z} + \frac{1}{\overline{z}} = 2$$

$$\iff (*) \begin{cases} \overline{z} + z = 2z\overline{z} \\ z \neq 0 \end{cases}$$

第1式は

$$z\overline{z} - \frac{\overline{z}}{2} - \frac{z}{2} = 0$$

$$\therefore |z - \frac{1}{2}|^2 = \left(\frac{1}{2}\right)^2$$

$$\therefore |z - \frac{1}{2}| = \frac{1}{2}$$

となるから、(*)は

$$\begin{cases} \left| z - \frac{1}{2} \right| = \frac{1}{2} \\ z \neq 0 \end{cases}$$

である.

よって、 z が複素数平面上に作る曲線に原点を付け加えた図形は、 点 $\frac{1}{2}$ を中心とする半径 $\frac{1}{2}$ の円であり、求める面積は

$$\pi \left(\frac{1}{2}\right)^2 = \frac{\pi}{4} \qquad \cdots$$

である.

