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　過去 6年の出題

25年

1 (1) 数 II (対数)　桁数と最高位の数字
(2) 数 II (微分)　 3次方程式が虚数解をもつ
2 数A (確率)　さいころ投げでの目の総和の確率

3 数 C (平面ベクトル)　内積の計算と軌跡

4 数 B (数列)　数学的帰納法と分数漸化式

5 数A(確率)　 3方向に進むランダムウォーク

6 数 III(積分)　接する 2曲線と面積

7 数 III(微分)　グラフの概形と曲線外の点からの接線

8 数 C(複素数平面)　凸四角形の各辺に接する正方形の中心について

9 数 III(微分)　平均値の定理

24年

1 数 II (対数)　三角形の存在条件と対数不等式

2 数A (確率)　 3色の球による非復元事象の確率

3 数 I (2次関数)　絶対値付き 2次関数のグラフ

4 (1) 数 III (積分)　三角関数の部分積分
(2) 数 C (複素数平面)　正三角形をつくる
(3) 数A (場合の数)　二項係数
5 数A，数 III (確率，極限)　 2本の線分上の 3点を結ぶ図形の面積と極限

6 数 III (積分)　回転体の体積

7 数 II・数 III (微分)　 3次方程式の解と極限

8 数 III (極限)　 3つの円の内接・外接と極限

9 数 III (極限)　二項係数を係数にもつ多項式と極限
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23年

1 数 II (図形と方程式)　直線の方程式と点の軌跡

2 数A (確率)　さいころ投げによる得点の確率

3 (1) 数 I (2次関数)　絶対値付き 2次関数のグラフと直線の共有点の個数
(2) 数 II (積分)　定積分で表された関数
4 数 III (微分)　指数関数の最大値の極限とそのときの xの極限 (eの定義)

5 数 B (平面ベクトル)　三角形の外心

6 数A (確率)　数直線上の動点と確率

7 数 III (積分)　絶対値付き関数の定積分と最大値

8 数 III (複素数平面)　 zn = iを満たす複素数 zの実部，虚部

9 数 III (微分)　 tx− f(x)の最大値

22年

1 数A (確率)　円周上の 12個の点を移動する点についての確率

2 数 I (三角比)　三角形内の二等辺三角形

3 数 II (面積)　絶対値付き 2次関数のグラフと面積

4 数A (整数)　 4桁の数字の入れ換えについての証明問題

5 数A (確率)　 n個のサイコロの出た目の積M についての確率

6 数 B (空間ベクトル)　空間内の直線と xy平面上の放物線

7 数A数 B (整数，数列)　 2次の不定方程式と 3項間漸化式

8 数 III (積分)　定積分と不等式，極限

9 数 III (微分)　関数がつねに増加する
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21年

1 数 II (2次関数)　円，円環の面積と最大値

2 数 B (数列)　直線と円に外接する円の列

3 数A (確率)　球とさいころによる得点についての確率

4 数 B (数列)　領域において条件を満たす点の個数

5 数A (確率)　球とさいころによる得点についての確率

6 数 II (図形と方程式，微分)　軌跡，方程式への応用

7 数 III (複素数)　複素数の極形式

8 数 III (積分)　指数関数，対数関数のグラフと面積および極限

9 数 III (微分)　多項式の列と数学的帰納法

20年

1 数A (確率)　カードによる確率

2 数 II (微分)　 3次関数のグラフと接線

3 数 B (数列)　相似な四角形の列

4 数 III (積分)　回転体の体積と最大値

5 数 B (空間ベクトル)　四面体

6 数A (確率)　カードに書かれた数の和と条件付き確率

7 数 II (微分)　 2つの曲線に接する 3本の直線

8 数 III (複素数平面)　相似な三角形の列

9 数 B数 III (数列，数列の極限)　二項係数の和と極限

10 数A (整数)　複素数の実部，虚部が整数であることの証明

11 数 III (積分)　定積分と不等式，関数列の極限
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2025 2024 2023 2022 2021 2020

数学 I 数と式

数学 I 集合と命題

数学 I 2次関数 3 3 (1) 1

数学 I 図形と計量 2

数学 I データの分析

数学 A 場合の数 4 (3)

数学 A 確率 2 , 5 2 2 , 6 1 , 5 3 , 5 1 , 6

数学 A 整数の性質 4 10

数学 A 図形の性質

数学 II 式の証明

数学 II 複素数と方程式

数学 II 図形と方程式 1

数学 II 三角関数

数学 II 指数・対数 1 (1) 1

数学 II 微分 1 (2) 6 2 , 7

数学 II 積分 3 (2) 3

数学 B 数列 4 7 2 , 4 3

数学 B 統計的な推測

数学 III 関数

数学 III 数列の極限 5 , 9 9

数学 III 関数の極限 7 , 8

数学 III 微分法 7 , 9 4 , 9 9 9

数学 III 積分法 6 4 (1), 6 7 8 8 4 , 11

数学 C ベクトル 3 5 6 5

数学 C 複素数平面 8 4 (2) 8 7 8

数学 C 式と曲線

文系数学
文系学部 1 ， 2 ， 3 (80分)

• 確率は必ず出題される．ついで，2次関数，数学 IIの微分積分もよく出題される．
• データの分析，統計的な推測からは出題されていない．

理系数学
教育学部 (中学校) 3 ～ 8 (150分)

理系学部 4 ～ 8 (120分)

理学部 (数学・情報数理) 4 ～ 9 (180分)

医学部 5 ～ 9 (120分)
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• 2024年での出題はないが確率は頻出問題．同じく数学 IIIの微分積分，複素数平面，
ベクトルも頻出分野である．

• データの分析，統計的な推測からは出題されていない．
• 難問もあるが，入試の典型問題も多く出題される．まずは典型問題を標準入試問題
集などを終了させ，千葉大ならではの難問は類題を探すのではなく，その問題を研
究し尽くすことを薦める．
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1 数学 IIの微分 (+α)

1 nを正の整数とする．xの関数

f(x) = x3 − 2nx2 + (2n− 3)x+ 1

について以下の問いに答えよ．

(1) αを f(x) = 0の 1つの解とする．f
(

1
1− α

)
の値を求めよ．

(2) 方程式 f(x) = 0は異なる 3つの実数解をもつことを示せ．
(3) 方程式 f(x) = 0の解で 2番目に大きいものを βnとする．極限 lim

n→∞
βnを求めよ．

(24 千葉大 7)

参考問題

【1 – 1】a を実数とする．方程式

x3 − 3ax+ 1√
2

= 0

が虚数解を持つ a の範囲を求めよ．
(25 千葉大 1(2))

【1 – 2】k を定数とし，f(x) = x3 − kx とおく．曲線 C : y = f(x) 上に原点と異なる
点 P(a, f(a)) をとる．点 P を通り曲線 C とちょうど 2点を共有する 2つの直線の
うち，傾きが大きい方を ℓ1，小さい方を ℓ2 とする．さらに，C と ℓ1 の共有点のう
ち P と異なるものを Q1，C と ℓ2 の共有点のうち P と異なるものを Q2とする．ℓ1

および ℓ2の方程式と，Q1 および Q2 の座標を求めよ．
(20 千葉大 2)

【1 – 3】a は 0 でない定数とする．2つの放物線 y = x2 と x = 1
2a

y2 + 3a
4
の両方に

接する直線がちょうど 3本となるような a の範囲を求めよ．
(20 千葉大 7)
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2 極限

2 2つの実数 a, bは 0 < b < aを満たすとする．関数

f(x) = 1
b
(e−(a−b)x − e−ax)

の最大値をM(a, b)，最大値をとるときの xの値をX(a, b)と表す．ここで，eは自然
対数の底である．

(1) X(a, b)を求めよ．
(2) 極限 lim

b→+0
X(a, b) を求めよ．

(3) 極限 lim
b→+0

M(a, b) を求めよ．

(23 千葉大 4)

参考問題

【2 – 1】半径 1，中心Oの円 C がある．2つの円 C1と C2が次の 2つの条件を満たす
とする．

• C1と C2はどちらも C に内接する．
• C1と C2は互いに外接する．

円C1，C2の中心をそれぞれD，Eとし，半径をそれぞれ p, qとする．θ = ∠DOEと
おく．以下の問いに答えよ．

(1) qを pと θを用いて表せ．

(2) pを固定する．θが 0に近づくとき，
q

θ2
の極限値を求めよ．

さらに，円 C3が次の 2つの条件を満たすとする．

• C3と C1は半径が等しい．
• C3は C に内接し，C1，C2のどちらとも外接する．

このとき以下の問いに答えよ．

(3) p =
√
2− 1のとき，qの値を求めよ．

(4) θが 0に近づくとき，
q
p
の極限値を求めよ．

(24 千葉大 8)
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3 数学 IIIの微分

3 rを正の実数とし，関数

f(x) = x+ r√
1 + sin2 x

を考える．

(1) r = 1のとき，f(x)はつねに増加することを示せ．
(2) 次の条件を満たす最大の正の実数 cを求めよ．

条件：0 < r < c のときは f(x)がつねに増加する．

(22 千葉大 9)

参考問題

【3 – 1】すべての実数 x に対して定義された関数

f(x) = 16− x2√
x4 − 2x2 + 16

について，以下の問いに答えよ．

(1) f ′(x) = 0を満たす実数 xをすべて求めよ．
(2) f ′′(x) = 0を満たす実数 xをすべて求めよ．
(3) y = f(x)の凹凸，変曲点，ならびに漸近線を調べて，そのグラフの概形を描け．
(4) 点 (0, t)から曲線 y = f(x)に接線が引けるような実数 tの範囲を求めよ．

(25 千葉大 7)
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4 平均値の定理

4 関数 f(x)と実数 tに対し，xの関数 tx− f(x)の最大値があればそれを g(t)と書く．

(1) f(x) = x4のとき，任意の実数 tについて g(t)が存在する．この g(t)を求めよ．

以下，関数 f(x)は連続な導関数 f ′(x)を持ち，次の 2つの条件 ( i )，(ii)が成り立つ
ものとする．

( i ) f ′(x)は増加関数，すなわち a < bならば f ′(a) < f ′(b)

(ii) lim
x→−∞

f ′(x) = −∞ かつ lim
x→∞

f ′(x) = ∞

(2) 任意の実数 tに対して，xの関数 tx− f(x)は最大値 g(t)を持つことを示せ．
(3) sを実数とする．tが実数全体を動くとき，tの関数 st − g(t)の最大値は f(s)とな
ることを示せ．

(23 千葉大 9)

参考問題

【4 – 1】関数 f(x) は 3次導関数 f ′′′(x)を持ち，f ′(0) = 0であり，すべての実数 xに
対して f ′′(x) > 0, f ′′′(x) < 0を満たすものとする．また，0 < a < b とし，

F =
f(b) + f(a)

2
(b− a)−

∫ b

a
f(x) dx

とする．このとき，以下の問いに答えよ．

(1) F > 0 を示せ．

(2) F < 1
2

{
f(a)− 2f

(
a+ b
2

)
+ f(b)

}
(b− a)を示せ．

(3) f(a)− 2f
(
a+ b
2

)
+ f(b) < b− a

2
f ′(b) を示せ．

(4) F <
(b− a)3

4
f ′′(a) を示せ．

(25 千葉大 9)
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5 解答例

1 f(x) = x3 − 2nx2 + (2n− 3)x+ 1

(1) αは f(x) = 0の解の 1つであるから

f(α) = 0 …… 1⃝

である．このとき

f
(

1
1− α

)
=

(
1

1− α

)3
− 2n

(
1

1− α

)2
+ (2n− 3)

(
1

1− α

)
+ 1

=
1− 2n(1− α) + (2n− 3)(1− α)2 + (1− α)3

(1− α)3

=
1− 2n(1− α) + (2n− 3)(1− 2α+ α2) + (1− 3α+ 3α2 − α3)

(1− α)3

=
−1− (2n− 3)α+ 2nα2 − α3

(1− α)3

=
−f(α)

(1− α)3

= 0 (∵ 1⃝) ……（答）

である．
(2) x = 0, 1を代入すると，nに関係ない関数値 f(x)が得られる．

f(0) = 1 > 0

f(1) = 1− 2n+ (2n− 3) + 1 = −1 < 0

であり，区間 0 < x < 1に少なくとも 1つ f(x) = 0となる xが存在する．

さらに，x \= 0のとき f(x) = x3
(
1− 2n

x
+ 2n− 3

x2
+ 1

x3

)
と変形すると

lim
x→−∞

f(x) = −∞であり，区間 x < 0に少なくとも 1つ f(x) = 0となる xが存在

する．
lim
x→∞

f(x) = ∞であり，区間 1 < xに少なくとも 1つ f(x) = 0となる xが存在する．

3次方程式 f(x) = 0の実数解は高々3個であるから，f(x) = 0は 3つの区間

x < 0, 0 < x < 1, 1 < x

にそれぞれ解を 1つずつもつ，すなわち，方程式 f(x) = 0は異なる 3つの実数解を
もつ． …… (証明終わり)

(3) f(x) = 0の異なる 3つの解を αn, βn, γn (αn < 0 < βn < 1 < γn)とおくと，βn

は 2番目に大きい解である．
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(1)より， 1
1− αn

, 1
1− βn

, 1
1− γn

も f(x) = 0の異なる 3つの解であり

− αn > 0 > −βn > −1 > −γn

1− αn > 1 > 1− βn > 0 > 1− γn

∴ 1
1− γn

< 0 < 1
1− αn

< 1
1− βn

∴ αn = 1
1− γn

, βn = 1
1− αn

, γn = 1
1− βn

であり

βn = 1
1− αn

= 1

1− 1
1− γn

=
1− γn
−γn

= 1− 1
γn

である．ここで

f(n) = n3 − 2n3 + (2n− 3)n+ 1

= −n3 + 2n2 − 3n+ 1

= −n2(n− 2)− 3n+ 1

< 0 (∵ nは正の整数)

(2)より

1 ≦ n < γn ∴ lim
n→∞

γn = ∞

であるから

lim
n→∞

βn = lim
n→∞

(
1− 1

γn

)
= 1 ……（答）

である．

• (1)を無視して lim
n→∞

βn (0 < βn < 1)を考える．

y = x3 − 3x+ 1

y = 2n(x2 − x)

1

−1

αn βn
1

x

y

O

f(x) = 0 ⇐⇒ x3 − 3x+ 1 = 2n(x2 − x)

であり，f(x) = 0の解は 2曲線 y = x3− 3x+1,

y = 2n(x2 − x)の共有点の x座標である．

y = 2n(x2 − x) = 2n
(
x− 1

2

)2
− n

2

であり，n → ∞のとき，y = 2n(x2 − x)の頂点(
1
2
, − n

2

)
は下方に移動し，区間 0 < x < 1の

範囲にある共有点の x座標 βnは 1に近づくと推定される．
この推定が成り立つことを証明する．
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f
(
1− 1

n

)
= f

(
n− 1
n

)
=

(
n− 1
n

)3
− 2n

(
n− 1
n

)2
+ (2n− 3) · n− 1

n
+ 1

=
(n3 − 3n2 + 3n− 1)− 2n2(n2 − 2n+ 1) + n2(2n2 − 5n+ 3) + n3

n3

= n3 − 2n2 + 3n− 1
n3

=
n2(n− 2) + 3n− 1

n3

> 0 (∵ nは正の整数)

であり，0 < 1− 1
n

< 1と (2)より，f(x) = 0の 2番目に大きい解 βnについて

1− 1
n

< βn < 1 が成り立ち lim
n→∞

(
1− 1

n

)
= 1

である．はさみうちの原理により

lim
n→∞

βn = 1

である．

【1 – 1】 f(x) = x3 − 3ax+ 1√
2

とおく．aは実数であるから，実数係数の 3次方程式 f(x) = 0が虚数解をもつとき，
その共役複素数も解であるから

「f(x) = 0 が虚数解を持つ」

ということは

「f(x) = 0 が 1つの実数解と互いに共役な複素数解をもつ」

ということであり

「f(x) = 0 の実数解はただ 1つである」 …… (∗)
ということである．y = f(x)のグラフと x軸の共有点について調べる．

f ′(x) = 3x2 − 3a = 3(x2 − a)

( i ) a < 0 のとき，すべての x に対し f ′(x) > 0 であり，f(x) は単調増加である．
y = f(x)のグラフと x軸の共有点は 1個であり，(∗)を満たす．

(ii) a = 0のとき，f(x) = x3 + 1√
2

=
(
x+ 2−

1
6

)(
x2 − 2−

1
6x+ 2−

1
3

)
であり

x2−2−
1
6x+2−

1
3 =

(
x− 2−

1
6

2

)2

− 2−
1
3

4
+2−

1
3 =

(
x− 2−

1
6

2

)2

+ 3
4
·2−

1
3 > 0

であるから，f(x) = 0はただ 1つの実数解 x = −2−
1
6 をもつ．

(iii) a > 0のとき，f(x)は x = ±
√
aで極値をとるから

(∗) ⇐⇒ (極大値)(極小値) > 0 …… 1⃝
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である．

(極大値)(極小値) = f(−
√
a)f(

√
a)

=

(
−a

√
a+ 3a

√
a+ 1√

2

)(
a
√
a− 3a

√
a+ 1√

2

)
= 1

2
− 4a3

= 1
2
(1− 2a)(1 + 2a+ 4a2)

1 + 2a+ 4a2 = 4
(
a+ 1

4

)2
+ 3

4
> 0であり， 1⃝であるための aの条件は

1− 2a > 0 ∴ a < 1
2

であり，a > 0とあわせて

0 < a < 1
2

である．

( i )，(ii)，(iii)をまとめると，求める aの範囲は

a <
1

2
……（答）

である．

• f(x) = 0 ⇐⇒ x3 + 1√
2

= 3ax

曲線 y = x3 + 1√
2
と直線 y = 3axの共有点について調べる．

y′ = 3x2

であり，y = x3 + 1√
2
上の点

(
t, t3 + 1√

2

)
における接線の方程式は

y = x3 + 1√
2

y = 3ax

x

y

O

y = 3t2(x− t) + t3 + 1√
2

∴ y = 3t2x− 2t3 + 1√
2

…… ア⃝

である．y = 3axは aの値にかかわらず原点を通る
直線であり，ア⃝が原点を通るのは

0 = −2t3 + 1√
2

∴ t3 = 1

2
√
2

∴ t = 1√
2

のときである．このとき ア⃝は

y = 3
2
x
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であり，求める aの範囲は

3a < 3
2

∴ a < 1
2

である．

【1 – 2】 C : y = f(x) = x3 − kx C
ℓ1

ℓ2

P

Q1

Q2

a
−a

2
x

y

O

f ′(x) = 3x2 − k

C 上の点
(
t, t3 − kt

)
における接線の方程式は

y = (3t2 − k)(x− t) + t3 − kt

∴ y = (3t2 − k)x− 2t3 …… 1⃝

である．これが C 上の原点と異なる点 P(a, f(a))

を通るから

a3 − ka = (3t2 − k)a− 2t3

2t3 − 3at2 + a3 = 0

(t− a)2(2t+ a) = 0

∴ t = a, − a
2

である．2つの接線の傾き f ′(a), f ′
(
− a

2

)
は

f ′(a) = 3a2 − k

f ′
(
− a

2

)
= 3

4
a2 − k

∴ f ′
(
− a

2

)
< f ′(a)

である．よって ℓ1, ℓ2の方程式は

ℓ1 : y = (3a2 − k)x − 2a3 ……（答）

ℓ2 : y =

(
3

4
a2 − k

)
x +

a3

4
……（答）

である．
また，C と接線 1⃝の共有点の x座標は

x3 − kx = (3t2 − k)x− 2t3

x3 − 3t2x+ 2t3 = 0

(x− t)2(x+ 2t) = 0

∴ x = t, − 2t

であり，Q1, Q2は Pでない方 (x = aでない方)の共有点である．
t = aのとき，共有点の x座標は x = a, − 2aであり，Q1の x座標は−2aである

から

Q1

(
−2a, − 8a3 + 2ka

)
……（答）
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である．
t = − a

2
のとき，共有点の x座標は x = − a

2
, aであり，Q2の x座標は− a

2
であ

るから

Q2

(
− a

2
, − a3

8
+

k

2
a

)
……（答）

である．

【1 – 3】
y = x2 …… 1⃝

x = 1
2a

y2 + 3a
4

…… 2⃝
1⃝

2⃝

x

y

O

(x2)′ = 2xより，放物線 1⃝上の点
(
t, t2

)
におけ

る接線の方程式は

y = 2t(x− t) + t2

∴ y = 2tx− t2 …… 3⃝

である．直線 3⃝が放物線 2⃝と接する条件は

y = 2t
(

1
2a

y2 + 3a
4

)
− t2

t
a
y2 − y + 3

2
at− t2 = 0

が重解をもつことであり，a \= 0に注意すると
t
a

\= 0

(−1)2 − 4 · t
a

·
(
3
2
at− t2

)
= 0

⇐⇒

{
t \= 0

a− 6at2 + 4t3 = 0

⇐⇒ a− 6at2 + 4t3 = 0 …… 4⃝

である． 4⃝を満たす直線 3⃝がちょうど 3本となる条件は

4⃝を満たす実数 tが 3つ存在する …… (∗)
ことである．f(t) = 4t3 − 6at2 + aとおく．

f ′(t) = 12t2 − 12at = 12t(t− a)

であり

(∗) ⇐⇒ (極大値)(極小値) < 0

⇐⇒ f(0)f(a) < 0

⇐⇒ a(−2a3 + a) < 0

であるから，求める aの範囲は

a2(2a2 − 1) > 0 ∴ a < − 1√
2
,

1√
2

< a ……（答）

である．
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2 f(x) = 1
b
(e−(a−b)x − e−ax) (0 < b < a)

(1) 微分すると

f ′(x) = 1
b
{−(a− b)e−(a−b)x + ae−ax}

= e−ax

b
{a− (a− b)ebx}

f ′(x)の符号は a− (a− b)ebxの符号と一致する．符号の変わり目は

ebx = a
a− b

∴ bx = log a
a− b

すなわち x = 1
b
log a

a− b

であり，f(x)の増減は下表となる．

x · · · 1
b
log a

a− b
· · ·

f ′(x) + 0 −

f(x)

よって，最大値をとるときの xの値X(a, b)は

X(a, b) =
1

b
log

a

a − b
……（答）

である．

(2) lim
b→+0

X(a, b) = lim
b→+0

1
b
log a

a− b
= lim

b→+0

1
b
log 1

1− b
a

= lim
b→+0

1
a

(
− a

b

)
log

(
1− b

a

)
= 1

a
lim
b→+0

log
(
1− b

a

)−a
b

eの定義 lim
h→0

(1 + h)
1
h = eにより

lim
b→+0

X(a, b) =
1

a
……（答）

である．

• lim
h→0

log(1 + h)

h
= 1より

lim
b→+0

X(a, b) = lim
b→+0

1
a

(
− a

b

)
log

(
1− b

a

)
= 1

a
lim
b→+0

log
(
1− b

a

)
− b

a

= 1
a

としてもよい．

• lim
b→+0

X(a, b) = lim
b→+0

1
b
log a

a− b
= lim

b→+0

log a− log(a− b)

b

= lim
b→+0

log(a− b)− log a

−b
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g(x) = log x とおくと

lim
b→+0

X(a, b) = g′(a) =
1

a
……（答）

である．

(3) M(a, b)は f(x)の最大値であるから

M(a, b) = f
(
1
b
log a

a− b

)
= 1

b

{
e−

a−b
b

log a
a−b − e−

a
b
log a

a−b

}
= 1

b

{(
a

a− b

)−a−b
b −

(
a

a− b

)−a
b

}
= 1

b

(
a

a− b
− 1

)(
a

a− b

)−a
b

= 1
a− b

· 1(
1− b

a

)−a
b

eの定義 lim
h→0

(1 + h)
1
h = eにより

lim
b→+0

M(a, b) = 1
a

· 1
e

=
1

ae
……（答）

である．

• (2)の利用を考えると見通しがよくなる．X = X(a, b)とおくと

M(a, b) = f(X) = 1
b
(e−(a−b)X − e−aX) = e−aX

b
(ebX − 1)

= e−aX · (ebX − 1)

bX
·X

(2)の結果と eの定義 lim
h→0

eh − 1
h

= 1により

lim
b→+0

M(a, b) = e−a· 1
a · 1 · 1

a
= 1

ae

である．

【2 – 1】

(1) 3つの円C(中心O,半径 1)，C1(中心D,半径 p)，

O

DE

θ 1− p

p

1− q

q

C

C1C2

C2(中心 E,半径 q)は 2つの条件

• C1と C2はどちらも C に内接する．
• C1と C2は互いに外接する．

を満たす．

2円が内接する ⇐⇒ (中心間の距離) = |半径の差 |
2円が外接する ⇐⇒ (中心間の距離) = (半径の和)

であるから

OD = 1− p, OE = 1− q, DE = p+ q

18



を満たす．θ = ∠DOEであるから，△ODEで余弦定理を用いると

DE2 = OD2 +OE2 − 2OD ·OEcos θ

(p+ q)2 = (1− p)2 + (1− q)2 − 2(1− p)(1− q) cos θ

2pq = (1− 2p) + (1− 2q)− 2(1− p) cos θ + 2(1− p)q cos θ

{p+ 1− (1− p) cos θ}q = 1− p− (1− p) cos θ

{1 + p− (1− p) cos θ}q = (1− p)(1− cos θ)

C1は C に内接するから p < 1であり，1 + p− (1− p) cos θ \= 0であるから

q =
(1 − p)(1 − cos θ)

1 + p − (1 − p) cos θ
…… 1⃝ ……（答）

である．
(2) pを固定する．(1)の結果より

lim
θ→0

q

θ2
= lim

θ→0

(1− p) sin2 θ

{1 + p− (1− p) cos θ}(1 + cos θ)θ2

= lim
θ→0

{
1− p

{1 + p− (1− p) cos θ}(1 + cos θ)
·
(
sin θ
θ

)2
}

=
1− p

{1 + p− (1− p)} · 2 · 12

=
1 − p

4p
……（答）

である．
(3) さらに，C3は次の 2つの条件

• C3と C1は半径が等しい．
• C3は C に内接し，C1，C2のどちらとも外接する．

を満たし，p =
√
2− 1であるから，円 C3の中心を F，半径を rとおくと

r = p =
√
2− 1

OF = 1− r = 1− (
√
2− 1) = 2−

√
2

DF = p+ r = 2r = 2
√
2− 2

EF = q + r = q +
√
2− 1

であり

OD : OF : DF = (2−
√
2) : (2−

√
2) : (2

√
2− 2) = 1 : 1 :

√
2

であるから，△ODFは ∠DOF = π
2
の直角二等辺三角形である．このとき

θ = π
4
または 3

4
π

である．
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O

D

E

F

Hθ

1− p

p

1− q q

1− r

r

C

C1

C2

C3

O

D

E

F

H

θ 1− p

p

1− qq
1− r

r

C

C1
C2

C3

p =
√
2− 1を 1⃝に代入すると

θ = π
4
のとき

q =

(2−
√
2)

(
1−

√
2
2

)
√
2−

(
2−

√
2
) √

2
2

=
(2−

√
2)2

2
√
2− (2−

√
2)
√
2

=
2(
√
2− 1)2

2
= 3− 2

√
2

θ = 3
4
πのとき

q =

(2−
√
2)

(
1 +

√
2
2

)
√
2−

(
2−

√
2
)(

−
√
2
2

) = 22 − 2

2
√
2 + (2−

√
2)
√
2

= 1

2
√
2− 1

=
2
√
2 + 1
7

である．よって，qの値は

q = 3 − 2
√
2,

2
√
2 + 1

7
……（答）

である．
(4) C1と C3の接点をHとおくと

DH = ODsin∠DOH

である．DH = p, OD = 1−p，また∠DOH = θまたは π−θであるから sin∠DOH =

sin θであり

p = (1− p) sin θ ∴ p = sin θ
1 + sin θ

である．このとき， 1⃝は

q =

(
1− sin θ

1 + sin θ

)
(1− cos θ)

1 + sin θ
1 + sin θ

−
(
1− sin θ

1 + sin θ

)
cos θ

= 1− cos θ
(1 + sin θ) + sin θ − cos θ

= 1− cos θ
1 + 2 sin θ − cos θ
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であるから

lim
θ→0

q
p

= lim
θ→0

(
1− cos θ

1 + 2 sin θ − cos θ
· 1 + sin θ

sin θ

)
= lim

θ→0

(1− cos θ)(1 + cos θ)(1 + sin θ)

(1− cos θ + 2 sin θ)(1 + cos θ) sin θ

= lim
θ→0

sin2 θ(1 + sin θ)

{sin2 θ + 2 sin θ(1 + cos θ)} sin θ

= lim
θ→0

1 + sin θ
sin θ + 2(1 + cos θ)

=
1

4
……（答）

である．

3 f(x) = x+ r√
1 + sin2 x

(1) r = 1のとき

f(x) = x+ 1√
1 + sin2 x

f ′(x) = 1− 1
2
(1 + sin2 x)−

3
2 · 2 sinx cosx

=
2(1 + sin2 x)

3
2 − sin 2x

2(1 + sin2 x)
3
2

であり，すべて xに対して 2 ≦ 2(1 + sin2 x)
3
2 ≦ 4

√
2，−1 ≦ sin 2x ≦ 1であるから

f ′(x) > 0

であり，f(x)はつねに増加する． …… (証明終わり)

(2) f(x)を微分すると

f ′(x) =
2(1 + sin2 x)

3
2 − r sin 2x

2(1 + sin2 x)
3
2

であり，f ′(x)の符号は 2(1 + sin2 x)
3
2 − r sin 2xの符号と一致するから

条件：0 < r < cのときは f(x)がつねに増加する

⇐⇒ 0 < r < cのときはつねに f ′(x) ≧ 0である

⇐⇒ 0 < r < cのときはつねに 2(1 + sin2 x)
3
2 − r sin 2x ≧ 0 …… (∗)である

(∗)を満たす rの値の範囲を求める．

(∗) ⇐⇒ 2
(
1 + 1− cos 2x

2

) 3
2 ≧ r sin 2x

⇐⇒ 2
(
3− cos 2x

2

) 3
2 ≧ r sin 2x
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左辺はつねに正であるから，sin 2x ≦ 0のときこの不等式はつねに成り立つ．sin 2x > 0

のときについて調べる．

(∗) ⇐⇒ r ≦ (3− cos 2x)
3
2

√
2 sin 2x

⇐⇒ r2 ≦ (3− cos 2x)3

2 sin2 2x
(∵ 辺々の値は正)

t = cos 2xとおくと

(3− cos 2x)3

2 sin2 2x
=

(3− cos 2x)3

2(1− cos2 2x)
=

(3− t)3

2(1− t2)

である．g(t) =
(3− t)3

2(1− t2)
(−1 < t < 1)とおくと

g′(t) = 1
2
· 3(3− t)2(−1) · (1− t2)− (3− t)3 · (−2t)

(1− t2)2

=
(3− t)2{3(t2 − 1) + 2t(3− t)}

2(1− t2)2

=
(3− t)2(t2 + 6t− 3)

2(1− t2)2

−1 < t < 1における g(t)の増減は下表となる．

t (−1) · · · −3 + 2
√
3 · · · (1)

g′(t) − 0 +

g(t)

g(−3 + 2
√
3) =

(6− 2
√
3)3

2
{
1− (−3 + 2

√
3)2

}
=

(2
√
3)3(

√
3− 1)3

2{1− (21− 12
√
3)}

=
24
√
3(3

√
3− 3 · 3 + 3

√
3− 1)

2(−20 + 12
√
3)

=
3
√
3(6

√
3− 10)

3
√
3− 5

= 6
√
3

0 < r < cのときはつねに不等式 (∗)が成り立つための条件は

r2 ≦ 6
√
3

が成り立つことであり，r > 0より

r ≦
√
6
√
3
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である．よって，条件を満たす最大の正の実数 cは

c =

√
6
√
3 ……（答）

である．

【3 – 1】 f(x) = 16− x2√
x4 − 2x2 + 16

(1) f(x)を微分すると

f ′(x) =

(−2x)
√
x4 − 2x2 + 16− (16− x2) · 4x3 − 4x

2
√
x4 − 2x2 + 16

x4 − 2x2 + 16

=
−2x(x4 − 2x2 + 16) + 2x(x2 − 16)(x2 − 1)

(x4 − 2x2 + 16)
3
2

=
2x{−(x4 − 2x2 + 16) + (x4 − 17x2 + 16)}

(x4 − 2x2 + 16)
3
2

= −30x3

(x4 − 2x2 + 16)
3
2

であり，f ′(x) = 0を満たす実数 xのすべては

x = 0 ……（答）

である．
(2) f ′(x)を微分すると

f ′′(x) = −30
3x2 · (x4 − 2x2 + 16)

3
2 − x3 · 3

2
(x4 − 2x2 + 16)

1
2 (4x3 − 4x)

(x4 − 2x2 + 16)3

= −30
3x2(x4 − 2x2 + 16)− 3x3(2x3 − 2x)

(x4 − 2x2 + 16)
5
2

= −30
3x2{(x4 − 2x2 + 16)− (2x4 − 2x2)}

(x4 − 2x2 + 16)
5
2

= 90
x2(x4 − 16)

(x4 − 2x2 + 16)
5
2

= 90
x2(x+ 2)(x− 2)(x2 + 4)

(x4 − 2x2 + 16)
5
2

であり，f ′′(x) = 0を満たす実数 xのすべては

x = 0, ± 2 ……（答）

である．
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(3) f(x)は偶関数であり，y = f(x)のグラフは y軸に
x 0 · · · 2 · · ·

f ′(x) 0 − − −

f ′′(x) 0 − 0 +

f(x)

関して対称である．
x ≧ 0での f(x)の増減，凹凸は右表となる．さ

らに

f(0) = 16√
16

= 4

f(2) = 12√
16− 8 + 16

= 12

2
√
6

=
√
6

lim
x→∞

f(x) = lim
x→∞

16
x2

− 1√
1− 2

x2
+ 16

x4

= −1

である．対称性も考えると，y = f(x)の変曲点は
(
±2,

√
6
)
である．

ならびに漸近線は y = −1 であり，y = f(x)のグラフの概形は下図となる．

2

√
6

−2−4 4

−1

4

y = f(x)

x

y

O

(4) y = f(x)のグラフの対称性より x ≧ 0の範囲で調べればよい．
y = f(x) (x ≧ 0)上の点 (s, f(s))における接線の方程式は

y = f ′(s)(x− s) + f(s)

であるから，点 (0, t)から曲線 y = f(x)に接線が引けるための条件は

t = f ′(s)(0− s) + f(s)を満たす実数 s (≧ 0)が存在する

ことである．

g(s) = −sf ′(s) + f(s)

とおき，sが s ≧ 0の範囲を動くときの g(s)の動く範囲を求める．

s 0 · · · 2 · · ·

g′(s) + 0 −

g(s)

g′(s) = −f ′(s)− sf ′′(s) + f ′(s)

= −sf ′′(s)

= −90
s3(s+ 2)(s− 2)(s2 + 4)

(s4 − 2s2 + 16)
5
2

であり，s ≧ 0における g(s)の増減は右表となる．

24



g(0) = −0 + f(0) = 4

g(2) = −2f ′(2) + f(2) = −2 · −30 · 8
(16− 8 + 16)

3
2

+
√
6

= 2 · 30 · 8
24 · 2

√
6
+
√
6 = 10√

6
+
√
6 =

8
√
6

3

lim
s→∞

g(s) = lim
s→∞

{
−s · −30s3

(s4 − 2s2 + 16)
3
2

+ f(s)

}

= lim
s→∞

{
30(

s
4
3 − 2

s
2
3

+ 16

s
8
3

) 3
2

+ f(s)

}

= 0− 1

= −1

であるから

−1 < g(s) ≦ 8
√
6

3

である．よって，求める tの範囲は

−1 < t ≦ 8
√
6

3
……（答）

である．

4

(1) f(x) = x4のとき，xの関数 tx− f(x) = tx− x4であり，これを xで微分すると

(tx− x4)′ = t− 4x3

である．(tx− x4)′は単調減少であり，(tx− x4)′の符号は x =
(
t
4

) 1
3 で正から負に

かわるから，tx− x4は任意の実数 tに対して x =
(
t
4

) 1
3 で極大かつ最大となる．

tx− f(x)の最大値 g(t)は

g(t) = t
(
t
4

) 1
3 −

(
t
4

) 4
3
= 3t

4

(
t
4

) 1
3
= 3

(
t

4

)4
3

……（答）

である．
(2) xの関数 tx− f(x)を xで微分すると

(tx− f(x))′ = t− f ′(x)

である．条件 ( i )，(ii)より

連続な導関数 f ′(x)は単調増加であり lim
x→−∞

f ′(x) = −∞ かつ lim
x→∞

f ′(x) = ∞ …

… (∗)
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であるから

t−f ′(x)は連続で単調減少であり lim
x→−∞

{t−f ′(x)} = ∞かつ lim
x→∞

{t−f ′(x)} = −∞

である．したがって，t − f ′(x) = 0となる xがただ一つ存在する．この xを α(t)と
おくと，x = α(t)で t − f ′(x)の符号は正から負にかわり，tx − f(x)は x = α(t)で
極大かつ最大となる．すなわち，任意の実数 tに対して xの関数 tx− f(x)は最大値
g(t) (= tα(t)− f(α(t)))を持つ． …… (証明終わり)

(3) 任意の実数 tに対して，(2)と同じく t− f ′(x) = 0を満たす値 xを α(t)とおくと

st− g(t) = st− (tα(t)− f(α(t)))

= {s− α(t)}t+ f(α(t))

= {s− α(t)}f ′(α(t)) + f(α(t))

である．

( i ) s− α(t) = 0のとき

st− g(t) = 0 · f ′(s) + f(s) = f(s)

である．
(ii) s− α(t) \= 0のとき

平均値の定理より

f(s)− f(α(t))

s− α(t)
= f ′(c)

を満たす実数 c (cは sとα(t)の間の値)が存在する．

f(s)− f(α(t)) = f ′(c)(s− α(t))

∴ f(α(t)) = f(s)− f ′(c)(s− α(t))

であるから

st− g(t) = (s− α(t))f ′(α(t)) + f(s)− f ′(c)(s− α(t))

= (s− α(t)){f ′(α(t))− f ′(c)}+ f(s)

f ′(x)は増加関数であるから

s < α(t) のとき，s < c < α(t)であるから，f ′(c) < f ′(α(t))

s > α(t) のとき，s > c > α(t)であるから，f ′(c) > f ′(α(t))

であり，いずれのときも s− α(t)と f ′(α(t))− f ′(c)は異符号であり

(s− α(t)){f ′(α(t))− f ′(c)} < 0

∴ st− g(t) < f(s)

である．

以上 ( i )(ii)より，st− g(t)は s = α(t)となる tにおいて最大値 f(s)をとる．
…… (証明終わり)
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【4 – 1】 f ′(0) = 0, f ′′(x) > 0, f ′′′(x) < 0

F =
f(b) + f(a)

2
(b− a)−

∫ b

a
f(x) dx (0 < a < b)

(1) g(t) =
f(t) + f(a)

2
(t− a)−

∫ t

a
f(x) dx (a ≦ t)

とおく．a < tにおいて

g′(t) =
f ′(t)

2
(t− a) +

f(t) + f(a)

2
· 1− f(t)

=
f ′(t)

2
(t− a)− f(t)− f(a)

2

g′′(t) =
f ′′(t)

2
(t− a) +

f ′(t)

2
· 1− f ′(t)

2

=
f ′′(t)

2
(t− a)

> 0 (∵ f ′′(t) > 0, a < t)

g′(t)は単調増加である．さらに，g′(a) = 0であるから，a < tにおいて g′(t) > 0

である．
したがって，g(t)は単調増加である．さらに，g(a) = 0であるから，a < tにお

いて g(t) > 0である．
よって，0 < a < bのとき g(b) > 0，すなわちF > 0である． …… (証明終わり)

• x > 0 において，f ′′(x) > 0 より，y = f(x) のグラフ

a b

y = f(x)

x

y

O

A
D

B

C

F

は下に凸である．さらに，f ′(x)は単調増加であり，かつ
f ′(0) = 0であるから，x > 0においては f ′(x) > 0，すな
わち f(x)は単調増加である．よって，y = f(x) (x > 0)

のグラフは右図となる．0 < a < bのとき

F =
f(b) + f(a)

2
(b− a)−

∫ b

a
f(x) dx

= (台形ABCDの面積)− (斜線部分の面積)

> 0

である．

(2) h(t) = 1
2

{
f(a)− 2f

(
a+ t
2

)
+ f(t)

}
(t− a)− g(t) (a ≦ t)

とおくと

h(t) =
f(t) + f(a)

2
(t− a)− f

(
t+ a
2

)
(t− a)− g(t)

=

∫ t

a
f(x) dx− f

(
t+ a
2

)
(t− a)
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である．

h′(t) = f(t)− f ′
(
t+ a
2

)
1
2
· (t− a)− f

(
t+ a
2

)
· 1

= f(t)− f
(
t+ a
2

)
− f ′

(
t+ a
2

)
t− a
2

である．平均値の定理より

f(t)− f
(
t+ a
2

)
t− t+ a

2

= f ′(c)

∴ f(t)− f
(
t+ a
2

)
= f ′(c) t− a

2

となる c
(
t+ a
2

< c < t
)
が存在するから

h′(t) = f ′(c) t− a
2

− f ′
(
t+ a
2

)
t− a
2

=
{
f ′(c)− f ′

(
t+ a
2

)}
t− a
2

> 0
(
∵ f ′′(x) > 0より f ′(x)は単調増加かつ t+ a

2
< c, a < t

)
であり，h(t)は単調増加である．さらに，h(a) = 0であるから

h(t) > 0 (a < t)

が成り立つ．
よって 0 < a < bのとき h(b) > 0，すなわち

F < 1
2

{
f(a)− 2f

(
a+ b
2

)
+ f(b)

}
(b− a)

である． …… (証明終わり)

• y = f(x)上の点
(
a+ b
2

, f
(
a+ b
2

))
における接線 ℓの

a b

y = f(x)

x

y

O

A
D

B

C

F

ℓ

P

Q

a+b
2

方程式は

y = f ′
(
a+ b
2

)(
x− a+ b

2

)
+ f

(
a+ b
2

)
であり，ℓと直線AD，BCとの交点をそれぞれP，Qとお
くと

AP = f(a)−
{
f ′
(
a+ b
2

)(
a− a+ b

2

)
+ f

(
a+ b
2

)}
= f(a)− f ′

(
a+ b
2

)
a− b
2

− f
(
a+ b
2

)
BQ = f(b)−

{
f ′
(
a+ b
2

)(
b− a+ b

2

)
+ f

(
a+ b
2

)}
= f(b)− f ′

(
a+ b
2

)
b− a
2

− f
(
a+ b
2

)
台形APQBの面積は

1
2
(AP + BQ)(b− a) = 1

2

{
f(a) + f(b)− 2f

(
a+ b
2

)}
(b− a)
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である．F は台形APQBに含まれる図形の面積であり

F < (台形APQBの面積)

であるから

F < 1
2

{
f(a)− 2f

(
a+ b
2

)
+ f(b)

}
(b− a)

である．

(3) 目標の不等式の左辺 f(a)− 2f
(
a+ b
2

)
+ f(b)は

(左辺) =
{
f(a)− f

(
a+ b
2

)}
+
{
f(b)− f

(
a+ b
2

)}
と変形される．平均値の定理より

f
(
a+ b
2

)
− f(a) = f ′(c1)

(
a+ b
2

− a
)
= f ′(c1)

b− a
2

f(b)− f
(
a+ b
2

)
= f ′(c2)

(
b− a+ b

2

)
= f ′(c2)

b− a
2

となる c1, c2

(
a < c1 <

a+ b
2

< c2 < b
)
が存在するから

(左辺) = −f ′(c1)
b− a
2

+ f ′(c2)
b− a
2

= {f ′(c2)− f ′(c1)} b− a
2

…… 1⃝

である．
f ′′(x) > 0より f ′(x)は単調増加であり，f ′(0) = 0かつ 0 < a < c1より f ′(c1) > 0

である．f ′(c2)− f ′(c1) > f ′(c2)であるから

(左辺) < f ′(c2)
b− a
2

< f ′(b) b− a
2

(∵ b− a > 0, c2 < b)

すなわち

f(a)− 2f
(
a+ b
2

)
+ f(b) < b− a

2
f ′(b)

である． …… (証明終わり)

(4) (2)と 1⃝より

F < 1
2
· {f ′(c2)− f ′(c1)} b− a

2
· (b− a)

=
(b− a)2

4
{f ′(c2)− f ′(c1)} (0 < a < c1 < c2 < b)

平均値の定理より

f ′(c2)− f ′(c1) = f ′′(d)(c2 − c1)

となる d (c1 < d < c2)が存在する．したがって

F <
(b− a)2

4
f ′′(d)(c2 − c1)
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である．f ′′′(x) < 0より f ′′(x)は単調減少であるから

f ′′(d) < f ′′(a) (∵ a < d)

0 < c2 − c1 < b− aであるから

F <
(b− a)2

4
· f ′′(a)(b− a)

すなわち

F <
(b− a)3

4
f ′′(a)

である． …… (証明終わり)
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