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V2
q:(2—\/§)<1_2> _ (2—\@)2 :2(\@_1)2:3_2\/5
Vi-(-va) YR WIS (RoV2VR 2
9:%7703835
V2
g = (2_\/5)<1+2) _ 22 -2 _ 1 2v2+41
_ _ 7
f—(2—\/§)<—\§§> 2V2+(2-V2)vV2  2v2-1
Thbd. £oT, ¢ DIEIX
q:3_2\/§’2\/§7+1 ...... (%)
ThHb.

(4) C1 & CsDEEREH EBL L
DH = ODsin /ZDOH

C#%. DH=p, OD = 1—p, £7 /DOH = 6 £7-1 7—0 T %% 5 sin /DOH =
sind THH

p=(1—p)sind
Thb. ZorkE, Ol
(1 ﬂ)(l—cos@)

_ sin 0
1+ sind

= ~ 1+sinf
o sin 0 _( __ sinf )
1+1+sin0 1+sind cos ¢
_ 1—cosf
(1+sinf) +sinf — cos b
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14+ 2sinf — cos@
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THEDH
él—%% - glg(l) ( 1+ gsin%os—ecose - —si_isléle )
~ lim (1 —cosO)(1+ cosB)(1+sinf)
6—0 (1 —cosf + 2sinf)(1 + cosf)sinb
~ lim sin? (1 + sin 0)
90 {sin?f + 2sin (1 + cos )} sin 6
1+sinf
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_1r a5
= (&)
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3 fl@) =2+ —L—=
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f(z) >0
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3
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3
2
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0<7r<cD&EIFDRIAEFER (x) KD LD 2D DSRMIZ
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rg\/ﬁ
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1) f(z) 2WHT 5L

3
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fla) = 2~ 227 1 16
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(3) f(z) I HMEBETH Y, y= f(x) DT T 7Lyl

BLTHMTH 5. x 0l...] 2

x 2 0TOD f(z) DEER, MMFAXRELDE., & () || 0
51z

£0) = 6 _, ffle) |l o | =101+
V16 f@ I\
f(2) = 12 _ 12k
V16 —8+16 26
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lim f(z) = lim z? =-1

J1— 5+ =2
.T2 1'4

Thd. WHELEZD L, y= f(z) DML (£2, V6) TH3.
BOCIZHHEMIE y=—1 Thb, y=f(2) DI 7 7OMKIIFHEL LS.
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y=f'(s)(z—s)+ f(s)
THEN0, K0, t) »ollifty = f(x) ITERDEIT 5 7DD RMIE

t=f'(s)(0—s) + f(s) &= TFH s (= 0) BIFEAET B
ZLTH 5.

9(s) = —sf'(s) + f(s)
EBE, sHsZ0DHFAZEN L ED g(s) DEIS HifH 2 KD 5.

g'(s) = —f'(s) = sf"(s) + f'(s)

= —sf"(s) s 0|2

3 o 2
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9(0) = =0+ f(0) =
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(-5 )
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Th5.
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(tx —2t) =t — 42
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tr — f(x) DERKIE g(t) 1%
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ThHb.
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THdh5

t— f'(x) (ZEHE CHIARD TH D xli)r_noo{t—f'(x)} =00 M2 zli_>no10{t—f'($)} = —00
THD. ULIEWoT, t—fl(x) =082 a7 —D2FETE. TDx%at) &
BLE, z=a(t) Tt— fl(z) DFFIFEEPSEIINDD, to— f(z)ldz=alt) T
MRPORKRELD., $hbb, EEOEBRLIZH LT oz OB tr — f(z) IZHKME
9(t) (=ta(t) - f(at) £F>. e (RERA#ED D)
(3) ERDFEHLIZNLT, (2) LUK t— fl(x)=0%&mdHr % a(t) LB &

st —g(t) = st — (ta(t) — f(a(t)))
={s—a(®)}t+ fla(t))
={s—a®)}f (a(t)) + f(a(t))
Thb.
(i) s—at)=0D& &

st—g(t) =0-f'(s)+ f(s) = f(s)
Thsd.
(i) s—at) x0D& &
SEIEOEH KD
s) — fla(t /
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Zi72 T EE ¢ (el s La(t) DEDOE) BFET 5.
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L fledt) = fs) = f1(e)(s — alt))
THEho

st —g(t) = (s — a(t)) [ (a(t)) + f(5) = f'(c)(s — a(t))
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[ (x) IZEEIBERTH %00 5
s<a(t) DEE, s<c<alt) THZIN5, f'(c)< f(at))
s>at) DEE, s>c>alt) THEINO, f'(c) > f(alt))

ThHY, WThDEED s—at) & f'la)) — f(c) IFBEFESTHD

(s —a@){f(a@) - f'(c)} <0
ost—g(t) < f(s)
Ths.
PAE (1)(i) &0, st—g(t)lds=at) 82 tITBWTHRKHE f(s) 2L 5.
""" (FEHH#E D D)
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(4-1] f0)=0, f'(z) >0, f"(x) <0

b
F_f@;ﬂww—@—Lﬂ@m:m<a<m

(1) ﬂﬂ:qu;%w@—w—/mex(a§ﬂ
LB a<tizBnT
g () = L oy LOEI@ Ly
f@) f(@t) — f(a)
=Ty (me- T
g,,(t)_f;w( 0 2O 1)
_ '@
O (¢ -a)

>0 (- f'(t) >0, a<t)

g ) IFHEFAMTH S, I561Z, ¢(a) =0THIHh5, a<tIiZBWVWTG () >0
THd.

L7hioT, g(t) RBFAMMTHS. 512, gla)=0THE15, a<tiiH
WTg(t) >0TH5.

EoT, 0<a<bDEZEg(b)>0, THHLLF>0THD. (FEHI#&D D)
ez >0IZBWVWT, f'(z) > 0&V, y= flz) DFT7

BFIMTHD. X512, f(z) XHBFHIMTHY, »o

FO)=0THBH5, z>0BWTHE f/(z) >0, T4

DB f(x) FHEFAEINTHS. £oT, y= f(z) (x >0)

DT T 73HAKERDE. 0<a<bDl &

F= f(b /f ) dx
—(Aﬁ/ABCD D) — (RHRES 72 D ) T
0
Thd
(2) ht) = 2 {f@) =2 (“EL) + fO} (t—a) — 9t) (@< t)
e SR
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Thd. FHEOEH LD

_ft+a
f(t)t ft(+a2 ):f,(c)

t a
( )=
aﬂéc( <c< )ﬁﬁ?‘?%ﬁb
t—a (t+a\ t—a
W) = fet5t - (HEe) S
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THB. e GE#ED D)
_ +b TS W
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FHEERIE
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THY, ( LERAD, BCLOXEEZITNTNP, Q&b
<k
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ety ezt og(agt) o
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- (250 b - (25)

B APQB DO Ix
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o
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TH5. FIZBKAPQB IZEFNAMEOHBETH D
F < (B APQB OTHHR)
THEHNS
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Thd.
@)aﬁmxgﬁwgﬂﬂ@—z““+

L)+ 1w} e -a
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b
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TH5.
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(b_a)2 / /
= {f(c2) = fl(c1)} (O<a<cr<eca<b)

SEEOEH KD
f'(e2) = f'ex) = f(d)(e2 — 1)
%5 d (e <d<cy) WFIETS. Lo T

—a)?
O () (e — er)
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THD. f(x)<0&D f(z) FHEHFFDTH L0 5
f(d) < f'(a) (. a<d)
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P2 pap-a)

ERAY.X=

30

...... GEBRED D)



	問題の選択に関する注意
	過去6年の出題
	数学IIの微分(+α)
	極限
	数学IIIの微分
	平均値の定理
	解答例

