FrontPage kamelink

前期 XH§2
(201)〜(208) ベクトル
(209)〜(213) 順列・組合せ
(214)〜(220) 確率

問題文をクリックすると解答をみることができます.

(209) 和の法則,積の法則,順列

和の法則

2つの事柄A,Bは同時には起こらないとする. Aの起こり方が a 通りあり,Bの起こり方が b 通りあるとすると, AまたはBが起こる場合は

  a+b 通り

ある.

積の法則

事柄Aの起こり方がa通りあり,その各々の場合について, 事柄Bの起こり方がb通りあるとすると,AとBがともに起こる場合は

  ab 通り

ある(樹形図をイメージしよう).

順列

異なるなる n 個のものの中から,異なる r 個を取り出して並べる配列を,n 個から r 個取る順列といい,その総数を {}_n\mathrm{P}_r で表す.

  {}_n\mathrm{P}_r=n(n-1)\, \cdots \, (n-r-1)=\frac{n!}{(n-r)!} (0\leq r\leq n)

問題文をクリックしてみて下さい.

積の法則の確認問題です.最高位の数字として0を選ぶことはできません.

問題文をクリックしてみて下さい.

2の倍数,3の倍数,6の倍数,5の倍数となる条件は?
(4)30と互いに素である整数は全体から2または3または5の倍数となる整数を除いたものです.

(210) 円順列

いくつかのものを円形並べる配列を円順列といい,異なるn個のものの円順列の総数は

  (n-1)! 通り

ある.

問題文をクリックしてみて下さい.

同じ文字Lを含むか否かで場合分けしながら,円順列を数えます.

問題文をクリックしてみて下さい.

同じものを含む順列,円順列の問題です.(2)は誘導がなくても求められるようにしておきたいものです.

(211) 組合せ,組分け・部屋割り

異なるn個のものの中からr個を取り出したときの組を,n個からr個を取る組合せといい,その総数を {}_n\mathrm{C}_r で表す.

  {}_n\mathrm{C}_r=\frac{{}_n\mathrm{P}_r}{r!}=\frac{n(n-1)\, \cdots \, (n-r-1)}{r!}=\frac{n!}{r!(n-r)!} (0\leq r\leq n)

異なるn個のものを,区別のつくr個に分ける,区別のつかないr個に分けるときは,「もの」を「人」とみてそれぞれ部屋割り,組分けをイメージするとよいでしょう.

問題文をクリックしてみて下さい.

「組分け」と「組分けを題材とした確率」(少々先取り)の問題です.組分けの総数は部屋割りを2通りに数える,あるいは,特定な人に着目するといった考え方で数えることができます.

問題文をクリックしてみて下さい.

異なるn個のものを異なる4個の箱に入れる.ものを人に置きかえると部屋割りの総数を数えていることになります.

(212) 同じものを含む順列

n個のもののうち,p個は同じもの,q個は別の同じもの, r個はまた別の同じもの,……であるとき, これらn個のもの全部を使って作ることができる順列の総数は

  \frac{n!}{p!q!r!\ \cdots} ただしp+q+r+\cdots=n

である.

問題文をクリックしてみて下さい.

同じものを含む順列についての基本問題です.

問題文をクリックしてみて下さい.

最短経路の問題ですが,進路変更が4回というのは面白いですね.

問題文をクリックしてみて下さい.

最短経路の問題です.(3)の「同じ道を何度通ってもよい」は目新しい.

(213) 整数解の個数

x+y+z=n (x≧0,y≧0,z≧0) を満たす整数解の組(x,y,z)の個数は,
球◯n個と仕切り棒|2本の並べ方の総数と一致するから
  {}_{n+2}\mathrm{C}_n

x+y+z=n (x>0,y>0,z>0) を満たす整数解の組(x,y,z)の個数は,
球◯n個を並べてできるすき間 n-1か所の中から仕切り棒|をおく2か所の選び方の総数と一致するから
  {}_{n-1}\mathrm{C}_2

重複組合せ
n種類のものの中から重複を許してr個を取るとり方の総数は
  {}_{n}\mathrm{H}_r{}_{n+r-1}\mathrm{C}_r

問題文をクリックしてみて下さい.

整数解の個数は球と仕切り棒の並べ方に言い換えることができます.

問題文をクリックしてみて下さい.

x,y,zの条件をなんとかする事を考えましょう.


トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2018-07-19 (木) 10:18:01 (2079d)