#author("2024-09-27T09:51:58+09:00","default:t-kame","t-kame")
#author("2024-10-18T15:41:17+09:00","default:t-kame","t-kame")
[[数学II・Bチェック&リピート]]~
[[群数列>数学II・Bチェック&リピート 第7章 §1いろいろな数列 13.群数列]]
← §2 数学的帰納法と漸化式:[[数学的帰納法>数学II・Bチェック&リピート 第7章 §2数学的帰納法と漸化式 1.数学的帰納法]] → 
[[2項間漸化式a_{n+1}=a_n+q(n)>数学II・Bチェック&リピート 第7章 §2数学的帰納法と漸化式 2.2項間漸化式a_{n+1}=a_n+q(n)]]

#contents
------
問題文を''クリック''すると解答をみることができます.
------

*''数学的帰納法'' [#ge50bf36]
[[&ref(http://kamelink.com/public/CR_IIB/2b070201_%E6%95%B0%E5%AD%A6%E7%9A%84%E5%B8%B0%E7%B4%8D%E6%B3%95problem.png,nolink,85%,問題文をクリックしてみて下さい.);>http://kamelink.com/public/CR_IIB/2b070201_%E6%95%B0%E5%AD%A6%E7%9A%84%E5%B8%B0%E7%B4%8D%E6%B3%95.pdf]]

----

*''類題演習'' [#wce67620]
//2.2-24東北大・理2文3.tex
[[&ref(https://kamelink.com/public/2024/2.2-24%E6%9D%B1%E5%8C%97%E5%A4%A7%E3%83%BB%E7%90%862%E6%96%873problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2024/2.2-24%E6%9D%B1%E5%8C%97%E5%A4%A7%E3%83%BB%E7%90%862%E6%96%873.pdf]]~
数学的帰納法が利用できます.~

//10.5-24東北大・文系4.tex
[[&ref(https://kamelink.com/public/2024/10.5-24%E6%9D%B1%E5%8C%97%E5%A4%A7%E3%83%BB%E6%96%87%E7%B3%BB4problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2024/10.5-24%E6%9D%B1%E5%8C%97%E5%A4%A7%E3%83%BB%E6%96%87%E7%B3%BB4.pdf]]~
漸化式と不定方程式がキレイに融合した問題です.~

//10.5-24会津大・6.tex
[[&ref(https://kamelink.com/public/2024/10.5-24%E4%BC%9A%E6%B4%A5%E5%A4%A7%E3%83%BB6problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2024/10.5-24%E4%BC%9A%E6%B4%A5%E5%A4%A7%E3%83%BB6.pdf]]~
ノーヒントで出題したくなる問題です.~


//10.5-24東京海洋大・生命・資源5.tex
[[&ref(https://kamelink.com/public/2024/10.5-24%E6%9D%B1%E4%BA%AC%E6%B5%B7%E6%B4%8B%E5%A4%A7%E3%83%BB%E7%94%9F%E5%91%BD%E3%83%BB%E8%B3%87%E6%BA%905problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2024/10.5-24%E6%9D%B1%E4%BA%AC%E6%B5%B7%E6%B4%8B%E5%A4%A7%E3%83%BB%E7%94%9F%E5%91%BD%E3%83%BB%E8%B3%87%E6%BA%905.pdf]]~
ノーヒントで出題したくなる問題です.~

//10.5-23富山大・理・医・薬3.tex
[[&ref(https://kamelink.com/public/2023/10.5-23%E5%AF%8C%E5%B1%B1%E5%A4%A7%E3%83%BB%E7%90%86%E3%83%BB%E5%8C%BB%E3%83%BB%E8%96%AC3problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2023/10.5-23%E5%AF%8C%E5%B1%B1%E5%A4%A7%E3%83%BB%E7%90%86%E3%83%BB%E5%8C%BB%E3%83%BB%E8%96%AC3.pdf]]~
(3)は指数法則に注意しながら数学的帰納法を用います.~

//10.5-23三重大・後・工1-1.tex
[[&ref(https://kamelink.com/public/2023/10.5-23%E4%B8%89%E9%87%8D%E5%A4%A7%E3%83%BB%E5%BE%8C%E3%83%BB%E5%B7%A51-1problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2023/10.5-23%E4%B8%89%E9%87%8D%E5%A4%A7%E3%83%BB%E5%BE%8C%E3%83%BB%E5%B7%A51-1.pdf]]~
後半は前半の不等式を利用します.~



//10.7-23高知大・教育4.tex
[[&ref(https://kamelink.com/public/2023/10.7-23%E9%AB%98%E7%9F%A5%E5%A4%A7%E3%83%BB%E6%95%99%E8%82%B24problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2023/10.7-23%E9%AB%98%E7%9F%A5%E5%A4%A7%E3%83%BB%E6%95%99%E8%82%B24.pdf]]~
(3)が示されれば,(2)は成り立ちますね.~

//10.5-23会津大・コンピュータ理工6.tex
[[&ref(https://kamelink.com/public/2023/10.5-23%E4%BC%9A%E6%B4%A5%E5%A4%A7%E3%83%BB%E3%82%B3%E3%83%B3%E3%83%94%E3%83%A5%E3%83%BC%E3%82%BF%E7%90%86%E5%B7%A56problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2023/10.5-23%E4%BC%9A%E6%B4%A5%E5%A4%A7%E3%83%BB%E3%82%B3%E3%83%B3%E3%83%94%E3%83%A5%E3%83%BC%E3%82%BF%E7%90%86%E5%B7%A56.pdf]]~
推定して証明するという帰納法の基本パターンです.~

//10.8-22岩手県大・後期・ソフト情3.tex
[[&ref(https://kamelink.com/public/2022/10.8-22%E5%B2%A9%E6%89%8B%E7%9C%8C%E5%A4%A7%E3%83%BB%E5%BE%8C%E6%9C%9F%E3%83%BB%E3%82%BD%E3%83%95%E3%83%88%E6%83%853problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2022/10.8-22%E5%B2%A9%E6%89%8B%E7%9C%8C%E5%A4%A7%E3%83%BB%E5%BE%8C%E6%9C%9F%E3%83%BB%E3%82%BD%E3%83%95%E3%83%88%E6%83%853.pdf]]~
(3)は小さい方の値を順次代入しながら f(j) の値を調べていきましょう.~


//10.5-22広島大・理系3.tex
[[&ref(https://kamelink.com/public/2022/10.5-22%E5%BA%83%E5%B3%B6%E5%A4%A7%E3%83%BB%E7%90%86%E7%B3%BB3problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2022/10.5-22%E5%BA%83%E5%B3%B6%E5%A4%A7%E3%83%BB%E7%90%86%E7%B3%BB3.pdf]]~
(2),(3)は(4)のヒントになっています.~

//10.5-22熊本大・教育・医(看護)3.tex
[[&ref(https://kamelink.com/public/2022/10.5-22%E7%86%8A%E6%9C%AC%E5%A4%A7%E3%83%BB%E6%95%99%E8%82%B2%E3%83%BB%E5%8C%BB(%E7%9C%8B%E8%AD%B7)3problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2022/10.5-22%E7%86%8A%E6%9C%AC%E5%A4%A7%E3%83%BB%E6%95%99%E8%82%B2%E3%83%BB%E5%8C%BB(%E7%9C%8B%E8%AD%B7)3.pdf]]~
自然数nについての命題なので数学的帰納法を用いましょう.~



//10.6-22公立千歳科技大・理工2-1.tex
[[&ref(https://kamelink.com/public/2022/10.6-22%E5%85%AC%E7%AB%8B%E5%8D%83%E6%AD%B3%E7%A7%91%E6%8A%80%E5%A4%A7%E3%83%BB%E7%90%86%E5%B7%A52-1problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2022/10.6-22%E5%85%AC%E7%AB%8B%E5%8D%83%E6%AD%B3%E7%A7%91%E6%8A%80%E5%A4%A7%E3%83%BB%E7%90%86%E5%B7%A52-1.pdf]]~
数学的帰納法を利用しましょう.~

//10.5-22公立はこだて未来大・シス情4.tex
[[&ref(https://kamelink.com/public/2022/10.5-22%E5%85%AC%E7%AB%8B%E3%81%AF%E3%81%93%E3%81%A0%E3%81%A6%E6%9C%AA%E6%9D%A5%E5%A4%A7%E3%83%BB%E3%82%B7%E3%82%B9%E6%83%854problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2022/10.5-22%E5%85%AC%E7%AB%8B%E3%81%AF%E3%81%93%E3%81%A0%E3%81%A6%E6%9C%AA%E6%9D%A5%E5%A4%A7%E3%83%BB%E3%82%B7%E3%82%B9%E6%83%854.pdf]]~
(2)では sin nθ は cos θ の n-1次多項式 fn(x) と sin θ の積で表すことができることを示しています.~
fn(x) は第2種のチェビシェフの多項式と呼ばれています.~

//10.5-22岩手県大・ソフト情3.tex
[[&ref(https://kamelink.com/public/2022/10.5-22%E5%B2%A9%E6%89%8B%E7%9C%8C%E5%A4%A7%E3%83%BB%E3%82%BD%E3%83%95%E3%83%88%E6%83%853problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2022/10.5-22%E5%B2%A9%E6%89%8B%E7%9C%8C%E5%A4%A7%E3%83%BB%E3%82%BD%E3%83%95%E3%83%88%E6%83%853.pdf]]~
(1)〜(3)の手順を(4)の帰納法でも繰り返します.~

//10.5-22東北学院大・文系A6.tex
[[&ref(https://kamelink.com/public/2022/10.5-22%E6%9D%B1%E5%8C%97%E5%AD%A6%E9%99%A2%E5%A4%A7%E3%83%BB%E6%96%87%E7%B3%BBA6problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2022/10.5-22%E6%9D%B1%E5%8C%97%E5%AD%A6%E9%99%A2%E5%A4%A7%E3%83%BB%E6%96%87%E7%B3%BBA6.pdf]]~
(1)は(2)の準備です.~



//10.6-21北海道大・理4.tex
[[&ref(http://kamelink.com/public/2021/10.6-21%E5%8C%97%E6%B5%B7%E9%81%93%E5%A4%A7%E3%83%BB%E7%90%864problem.png,nolink,70%,問題文をクリックしてみて下さい.);>http://kamelink.com/public/2021/10.6-21%E5%8C%97%E6%B5%B7%E9%81%93%E5%A4%A7%E3%83%BB%E7%90%864.pdf]]~
(2)(3)は数学的帰納法を用いましょう.~

//1.9-21神戸大・理1.tex
[[&ref(https://kamelink.com/public/2021/1.9-21%E7%A5%9E%E6%88%B8%E5%A4%A7%E3%83%BB%E7%90%861problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2021/1.9-21%E7%A5%9E%E6%88%B8%E5%A4%A7%E3%83%BB%E7%90%861answer.pdf]]~
(1)で状況をみて,(2)で推定し,帰納法で確認するという流れでしょう.~

//10.5-21公立千歳科技大・理工2.tex
[[&ref(https://kamelink.com/public/2021/10.5-21%E5%85%AC%E7%AB%8B%E5%8D%83%E6%AD%B3%E7%A7%91%E6%8A%80%E5%A4%A7%E3%83%BB%E7%90%86%E5%B7%A52problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2021/10.5-21%E5%85%AC%E7%AB%8B%E5%8D%83%E6%AD%B3%E7%A7%91%E6%8A%80%E5%A4%A7%E3%83%BB%E7%90%86%E5%B7%A52.pdf]]~
数学的帰納法と解法が指定されていますが,~
合同式を使うこともできます(もちろん,試験場では帰納法です).~

//10.5-21公立千歳科技大・中期・理工3.tex
[[&ref(https://kamelink.com/public/2021/10.5-21%E5%85%AC%E7%AB%8B%E5%8D%83%E6%AD%B3%E7%A7%91%E6%8A%80%E5%A4%A7%E3%83%BB%E4%B8%AD%E6%9C%9F%E3%83%BB%E7%90%86%E5%B7%A53problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2021/10.5-21%E5%85%AC%E7%AB%8B%E5%8D%83%E6%AD%B3%E7%A7%91%E6%8A%80%E5%A4%A7%E3%83%BB%E4%B8%AD%E6%9C%9F%E3%83%BB%E7%90%86%E5%B7%A53.pdf]]~
誘導がなくても数学的帰納法を用いることに気付きたい.~

//10.5-21岩手県大・ソフト情3-2.tex
[[&ref(https://kamelink.com/public/2021/10.5-21%E5%B2%A9%E6%89%8B%E7%9C%8C%E5%A4%A7%E3%83%BB%E3%82%BD%E3%83%95%E3%83%88%E6%83%853-2problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2021/10.5-21%E5%B2%A9%E6%89%8B%E7%9C%8C%E5%A4%A7%E3%83%BB%E3%82%BD%E3%83%95%E3%83%88%E6%83%853-2.pdf]]~
結果を予想し,過去すべてを引きずった数学的帰納法で証明します.~

//10.6-20愛知教大・3.tex
[[&ref(https://kamelink.com/public/2020/10.6-20%E6%84%9B%E7%9F%A5%E6%95%99%E5%A4%A7%E3%83%BB3problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2020/10.6-20%E6%84%9B%E7%9F%A5%E6%95%99%E5%A4%A7%E3%83%BB3.pdf]]~
推測して数学的帰納法で示すタイプの典型問題です.~



//10.5-19東京海洋大・生命・資源3.tex
[[&ref(https://kamelink.com/public/2019/10.5-19%E6%9D%B1%E4%BA%AC%E6%B5%B7%E6%B4%8B%E5%A4%A7%E3%83%BB%E7%94%9F%E5%91%BD%E3%83%BB%E8%B3%87%E6%BA%903problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2019/10.5-19%E6%9D%B1%E4%BA%AC%E6%B5%B7%E6%B4%8B%E5%A4%A7%E3%83%BB%E7%94%9F%E5%91%BD%E3%83%BB%E8%B3%87%E6%BA%903.pdf]]~
(1),(2)とも数学的帰納法を用いましょう.~

//10.5-16愛知教大・2.tex
[[&ref(https://kamelink.com/public/2016/10.5-16%E6%84%9B%E7%9F%A5%E6%95%99%E5%A4%A7%E3%83%BB2problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2016/10.5-16%E6%84%9B%E7%9F%A5%E6%95%99%E5%A4%A7%E3%83%BB2.pdf]]~
整数絡みの帰納法の基本問題です.~


//10.5-16愛知教大・5.tex
[[&ref(https://kamelink.com/public/2016/10.5-16%E6%84%9B%E7%9F%A5%E6%95%99%E5%A4%A7%E3%83%BB5problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2016/10.5-16%E6%84%9B%E7%9F%A5%E6%95%99%E5%A4%A7%E3%83%BB5.pdf]]~
整数絡みで帰納法を用いる頻出問題です.~

//10.6-15東京大・理4.tex
[[&ref(https://kamelink.com/public/2015/10.6-15%E6%9D%B1%E4%BA%AC%E5%A4%A7%E3%83%BB%E7%90%864problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2015/10.6-15%E6%9D%B1%E4%BA%AC%E5%A4%A7%E3%83%BB%E7%90%864.pdf]]~
(3)の数列はフィボナッチ数列とよばれていすものであり,~
数列{p_n}はフィボナッチ数列の奇数項を並べた数列です.~



//10.5-15津田塾大・学芸(国際関係)1-1.tex
[[&ref(https://kamelink.com/public/2015/10.5-15%E6%B4%A5%E7%94%B0%E5%A1%BE%E5%A4%A7%E3%83%BB%E5%AD%A6%E8%8A%B8(%E5%9B%BD%E9%9A%9B%E9%96%A2%E4%BF%82)1-1problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2015/10.5-15%E6%B4%A5%E7%94%B0%E5%A1%BE%E5%A4%A7%E3%83%BB%E5%AD%A6%E8%8A%B8(%E5%9B%BD%E9%9A%9B%E9%96%A2%E4%BF%82)1-1.pdf]]~
n=1のときとn≧2のときで分けなければならないのですが,この場合分けに辿り着くか…~

//10.7-13東京工大・1-1.tex
[[&ref(https://kamelink.com/public/2013/10.7-13%E6%9D%B1%E4%BA%AC%E5%B7%A5%E5%A4%A7%E3%83%BB1-1problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2013/10.7-13%E6%9D%B1%E4%BA%AC%E5%B7%A5%E5%A4%A7%E3%83%BB1-1.pdf]]~
自然数nについての命題なので数学的帰納法を用いましょう.~



//10.5-13明治大・総合数理4.tex
[[&ref(https://kamelink.com/public/2013/10.5-13%E6%98%8E%E6%B2%BB%E5%A4%A7%E3%83%BB%E7%B7%8F%E5%90%88%E6%95%B0%E7%90%864problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2013/10.5-13%E6%98%8E%E6%B2%BB%E5%A4%A7%E3%83%BB%E7%B7%8F%E5%90%88%E6%95%B0%E7%90%864.pdf]]~
「数学的帰納法を用いよ」とありますが,左辺の和を直接計算することもできます.~

//10.5-10京都大・理甲4・0048201004.tex
[[&ref(https://kamelink.com/public/2010/10.5-10%E4%BA%AC%E9%83%BD%E5%A4%A7%E3%83%BB%E7%90%86%E7%94%B24%E3%83%BB0048201004problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2010/10.5-10%E4%BA%AC%E9%83%BD%E5%A4%A7%E3%83%BB%E7%90%86%E7%94%B24%E3%83%BB0048201004.pdf]]~
n≦ k での成立を仮定する数学的帰納法です.~

//10.5-08会津大・コンピュータ理工6.tex
[[&ref(https://kamelink.com/public/2008/10.5-08%E4%BC%9A%E6%B4%A5%E5%A4%A7%E3%83%BB%E3%82%B3%E3%83%B3%E3%83%94%E3%83%A5%E3%83%BC%E3%82%BF%E7%90%86%E5%B7%A56problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2008/10.5-08%E4%BC%9A%E6%B4%A5%E5%A4%A7%E3%83%BB%E3%82%B3%E3%83%B3%E3%83%94%E3%83%A5%E3%83%BC%E3%82%BF%E7%90%86%E5%B7%A56.pdf]]~
自然数nについての命題なので数学的帰納法を用います.~



//10.5-08大阪市大・後理(数)6.tex
[[&ref(https://kamelink.com/public/2008/10.5-08%E5%A4%A7%E9%98%AA%E5%B8%82%E5%A4%A7%E3%83%BB%E5%BE%8C%E7%90%86(%E6%95%B0)6problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2008/10.5-08%E5%A4%A7%E9%98%AA%E5%B8%82%E5%A4%A7%E3%83%BB%E5%BE%8C%E7%90%86(%E6%95%B0)6.pdf]]~
1,2,…,nとn個の数との積の和の最小値を考察しています.~

//10.5-08大阪薬大・1-4.tex
[[&ref(https://kamelink.com/public/2008/10.5-08%E5%A4%A7%E9%98%AA%E8%96%AC%E5%A4%A7%E3%83%BB1-4problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2008/10.5-08%E5%A4%A7%E9%98%AA%E8%96%AC%E5%A4%A7%E3%83%BB1-4.pdf]]~
自然数nについての命題なので数学的帰納法を用います.~




//10.5-97東京大・文1.tex
[[&ref(https://kamelink.com/public/1997/10.5-97%E6%9D%B1%E4%BA%AC%E5%A4%A7%E3%83%BB%E6%96%871problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/1997/10.5-97%E6%9D%B1%E4%BA%AC%E5%A4%A7%E3%83%BB%E6%96%871.pdf]]~
a,bついての対称式なので,基本対称式a+b,abで式を処理しましょう.~



//10.5-88大阪市大・理・工・医2.tex
[[&ref(https://kamelink.com/public/1988/10.5-88%E5%A4%A7%E9%98%AA%E5%B8%82%E5%A4%A7%E3%83%BB%E7%90%86%E3%83%BB%E5%B7%A5%E3%83%BB%E5%8C%BB2problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/1988/10.5-88%E5%A4%A7%E9%98%AA%E5%B8%82%E5%A4%A7%E3%83%BB%E7%90%86%E3%83%BB%E5%B7%A5%E3%83%BB%E5%8C%BB2.pdf]]~
n=1,2,3,…,kでの成立を仮定して,n=k+1での成立を示します.~




//10.8-87東京大・理5.tex
[[&ref(https://kamelink.com/public/1987/10.8-87%E6%9D%B1%E4%BA%AC%E5%A4%A7%E3%83%BB%E7%90%865problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/1987/10.8-87%E6%9D%B1%E4%BA%AC%E5%A4%A7%E3%83%BB%E7%90%865.pdf]]~
式を展開し,整理した結果を数学的帰納法を用いて証明しましょう.~

**凸関数と数学的帰納法 [#t632ea48]
//10.5-17順天堂大・医3.tex
[[&ref(http://kamelink.com/public/2017/10.5-17%E9%A0%86%E5%A4%A9%E5%A0%82%E5%A4%A7%E3%83%BB%E5%8C%BB3problem.png,nolink,70%,問題文をクリックしてみて下さい.);>http://kamelink.com/public/2017/10.5-17%E9%A0%86%E5%A4%A9%E5%A0%82%E5%A4%A7%E3%83%BB%E5%8C%BB3.pdf]]~
凸関数についての問題です.~
(2)2個の数で成り立つ不等式は,4個,8個,16個,…でも成り立ちます.これを
数学的帰納法で示します.~
(3)で突如積分.さてどうするか(数学III).~

**カタラン数と数学的帰納法 [#pa695995]
//10.5-01京都府医大・医3.tex
[[&ref(https://kamelink.com/public/2001/10.5-01%E4%BA%AC%E9%83%BD%E5%BA%9C%E5%8C%BB%E5%A4%A7%E3%83%BB%E5%8C%BB3problem.png,nolink,70%,問題文をクリックしてみて下さい.);>https://kamelink.com/public/2001/10.5-01%E4%BA%AC%E9%83%BD%E5%BA%9C%E5%8C%BB%E5%A4%A7%E3%83%BB%E5%8C%BB3.pdf]]~
(1),(2)は(3)の準備であり,(3)は数学的帰納法を用いましょう.~
難問ですね.~

トップ   編集 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS