23年 福島大 食農 3 投稿日時: 2023年8月31日 投稿者: t-kame 上の問題文をクリックしてみて下さい.リンク:ベクトルの垂直零ベクトルでない2つのベクトルのなす角が90°であることは2つのベクトルの内積が0であることです.∠AHB=90°よりHはABを直径の両端とする球面上の点です.
教えて下さい。いつもお世話になっております。 (3)「z=0」追加が、必要か不要かわかりませんでした。 点P(x,y,0)とする。点Pの軌跡。 ①?z=1は軌跡?z=0がなくても、意味が通じる気もしました。 ②過去問に、平面方程式:x − 12y − 40 = 0,z=0 上記のような表現がありますか? よろしくお願いします。
以下、ポイントが2点です。 ・「点Pの軌跡が表す方程式を求めなさい.」3通り? 2平面の交差————————–①③ ベクトル形 ————————–② (x−a)/v1=(x−b)/v2=(x-c)/v3——-② ・内積の垂直条件について、 零ベクトル(非ゼロベクトル)が、0個か,1個か,2個か問題です。—④ ①私の質問が変でした。申し訳ありませんでした。 >「(3)「z=0」追加が、必要か不要かわかりませんでした。」 追加では、なくて、 「空間上の直線をxyzで表す時は、2平面の交差で表す。」(直線の標準形?) 「直線の方程式:平面 x−12y−40=0 と 平面 z=0 の交差」が正確でした。 ②三次元空間における直線の標準形?にこだわる必要もなかったですか? 「点Pの軌跡が表す方程式」はベクトル形?でもいいですか。 ③以下のサイトに、直線の方程式に「2平面の交差」についての説明がありませんでした。 直線の方程式を計算する事が特殊?問題文自体が特殊ですか? (参考)空間における直線の方程式に関する公式はいくつか形があります。 <高校数学の美しい物語 https://manabitimes.jp/math/998 (参考) sympy expression : (-x + 12*y + 40, z) ④内積の垂直条件。怪しいですか? >零ベクトルでない2つのベクトル >どちらかのベクトル >ChatGPT-3.5先生より >2つの非ゼロベクトル>ChatGPT-3.5先生より https://qiita.com/mrrclb48z/items/9642ba4caebf5d9c9e72#chatgpt-35%E3%81%A7:~:text=with%20another%20Point.-,%E5%86%85%E7%A9%8D,-%E3%81%AE%E5%9E%82%E7%9B%B4%E6%9D%A1%E4%BB%B6 ④qiita内でリンクしました。ありがとうございました。 ベクトルの垂直「2023 福島大学前期 食農学類【3】」をsympyとFreeCADでやってみたい。 https://qiita.com/mrrclb48z/items/fb33cebe679e407d7c75
直線の方程式でした。すみません。
教えて下さい。いつもお世話になっております。
(3)「z=0」追加が、必要か不要かわかりませんでした。
点P(x,y,0)とする。点Pの軌跡。
①?z=1は軌跡?z=0がなくても、意味が通じる気もしました。
②過去問に、平面方程式:x − 12y − 40 = 0,z=0
上記のような表現がありますか?
よろしくお願いします。
Pはxy平面上の点であることが前提になっていますが,答えの軌跡の中に「z=0」は入れるべきでしょう.解答を修正しておきました.ありがとうございます.
以下、ポイントが2点です。
・「点Pの軌跡が表す方程式を求めなさい.」3通り?
2平面の交差————————–①③
ベクトル形 ————————–②
(x−a)/v1=(x−b)/v2=(x-c)/v3——-②
・内積の垂直条件について、
零ベクトル(非ゼロベクトル)が、0個か,1個か,2個か問題です。—④
①私の質問が変でした。申し訳ありませんでした。
>「(3)「z=0」追加が、必要か不要かわかりませんでした。」
追加では、なくて、
「空間上の直線をxyzで表す時は、2平面の交差で表す。」(直線の標準形?)
「直線の方程式:平面 x−12y−40=0 と 平面 z=0 の交差」が正確でした。
②三次元空間における直線の標準形?にこだわる必要もなかったですか?
「点Pの軌跡が表す方程式」はベクトル形?でもいいですか。
③以下のサイトに、直線の方程式に「2平面の交差」についての説明がありませんでした。
直線の方程式を計算する事が特殊?問題文自体が特殊ですか?
(参考)空間における直線の方程式に関する公式はいくつか形があります。
<高校数学の美しい物語
https://manabitimes.jp/math/998
(参考) sympy expression : (-x + 12*y + 40, z)
④内積の垂直条件。怪しいですか?
>零ベクトルでない2つのベクトル
>どちらかのベクトル >ChatGPT-3.5先生より
>2つの非ゼロベクトル>ChatGPT-3.5先生より
https://qiita.com/mrrclb48z/items/9642ba4caebf5d9c9e72#chatgpt-35%E3%81%A7:~:text=with%20another%20Point.-,%E5%86%85%E7%A9%8D,-%E3%81%AE%E5%9E%82%E7%9B%B4%E6%9D%A1%E4%BB%B6
④qiita内でリンクしました。ありがとうございました。
ベクトルの垂直「2023 福島大学前期 食農学類【3】」をsympyとFreeCADでやってみたい。
https://qiita.com/mrrclb48z/items/fb33cebe679e407d7c75